ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 128

1965

А. А. КАПЛИН, Б. Ф. НАЗАРОВ, М. С. ЗАХАРОВ, В. С. ЖИКИНА

ИССЛЕДОВАНИЯ ПО ПОВЫШЕНИЮ НАДЕЖНОСТИ СТАЦИОНАРНОГО ЭЛЕКТРОДА С ПЛАТИНОВЫМ КОНТАКТОМ В МЕТОДЕ АМАЛЬГАМНОЙ ПОЛЯРОГРАФИИ С НАКОПЛЕНИЕМ

(Представлена научным семинаром кафедры физической химии)

Одним из наиболее перспективных методов определения 10⁻⁵% и менее примесей в полупроводниковых материалах является метод амальгамной полярографии с накоплением на стационарной ртутной капле [1].

В практике используются электроды двух типов: с выдавленной Hg-каплей и каплей, осажденной на Pt, Ag или Au контакте. Наибольшее применение находят электроды с Pt-контактом.

При разработке методики определения $10^{-5} - 10^{-6}$ % меди в индии высокой чистоты [2] с полярографированием на кислом фоне используемые нами электроды с Pt-контактом оказались в значительной степени непригодными.

При снятии полярограмм в области анодного пика меди ($\varphi a = +0,05$ в (нас. к. э.) на фоне 1 М Н₃РО₄ наблюдались аномальные зубцы, затрудняющие определение меди (рис. 2, кривая 16).

Кроме того, на таких электродах наблюдается значительный остаточный ток, обусловленный неполным амальгамированием поверхности платины (рис. 2, кривая 1*a*, 2*a*), что снижает чувствительность определений.

Данная работа посвящается исследованию по разработке методики обработки поверхности платины и условий ее удовлетворительного амальгамирования с целью устранения указанных недостатков.

Исследования показали, что существует взаимосвязь между появлением значительных остаточных токов и аномальных зубцов на полярограмме, с одной стороны, и качеством платинового контакта, однородностью его поверхности — с другой (рис. 1).

Показано, что способность поверхности контакта к амальгамированию зависит от условий анализа.

При полярографировании в кислых фонах и в положительной области потенциалов способность поверхности контакта к равномерному амальгамированию теряется быстрее, чем на щелочных и нейтральных фонах.

Изучена возможность устранения неоднородностей поверхности платины перед амальгамированием путем обработки последней в HNO₃, горячей HNO₃, смеси HNO₃ + HCl, в KOH в широком интервале положительных и отрицательных потенциалов (+0,5 в - 2,0 в, отн. нас. к. э.). Показано, что в большинстве случаев такая обработка не улучшает качества поверхности платинового контакта (зубцы не исчезают, амальгамирование не равномерное).

Нами установлено, что удовлетворительные результаты могут быть получены при прокаливании контакта в течение 5—10 минут в пламени

Рис. 1. Зависимость между свойствами Pt-контакта и свойствами Hg-капли, осажденной на этом контакте. а) 1 и 2 — полярограмма без накопления на качественной платине; 3 и 4 — полярограмма без накопления на Hg-капле, осажденной на том же контакте. Чувствительность 8 10 - 3 ма/мм, ком. 60. б) 1 — полярограмма без накопления на испорченном Pt-контакте; 2 — полярограмме без накопления на Hg-капле, осажденной на этом контакте. Чувствительность 8.10 - 3 ма/мм, компенсация максим.

газовой горелки. На рис. 2 (кривые 1*a*, 2*a*, 1*б*, 2*б*, 1*в*, 2*в*, 1*г*, 2*г*) приводится полярограмма без накопления при полярографировании в области потенциалов (-0,3 e - (-0,2) e, нас. к. э.) для электрода перед обработкой и на рис. 2 (кривые 3*a*, 4*a*, 3*б*, 4*б*, 3*e*, 4*e*, 3*г*, 4*г*) после обработки его в пламени газовой горелки. Сравнение полярограмм показывает, что прокаливание электрода значительно улучшает свойства последнего. На таких электродах не получается аномальных зубцов и они хорошо амальгамируются.

В работе было произведено сравнение свойств электродов до и после прокаливания в пламени генераторного газа + воздух, газа + O₂ и бензиновой горелки.

Установлено, что лучшие результаты получаются при прокаливании в газо-кислородном пламени.

Можно предполагать, что во время прокаливания удаляются адсорбированные в процессе анализа частицы, что делает поверхность контакта однородной. Это обстоятельство приводит к тому, что на полярограмме в положительной области потенциалов не получаются мешающие проведению анализа аномальные зубцы.

В процессе наращивания ртутной капли очень часто на поверхности платины вместо одной Hg-капли образуется несколько капель. При применении такого электрода получаются искаженные результаты анализа.

32

Появление нескольких ртутных капель связано также с неоднородностью поверхности платинового контакта. Исследован ряд растворов для амальгамирования поверхности платинового контакта.

Наиболее удовлетворительным является состав $Hg(NO_3)_2 - 0.05\%$, 0,5 M NH₄OH и 0.05 M трилон Б [3].

Рис. 2. Сравнение качества электрода до и после прокаливания. Кривые 1*a*, 2*a*, 1*b*, 2*b*, 1*b*, 2*b*, 1*c*, 2*c* — полярограммы без накопления на ряде электродов перед обработкой поверхности платины. Кривые 3*a*, 4*a*, 3*b*, 4*b*, 3*b*, 4*b*, 3*c*, 4*c* — полярограммы без накопления на тех же электродах после прокаливания в пламени газовой горелки.

Нами подобраны оптимальные условия амальгамирования контакта и разработана методика амальгамирования платины и наращивания ртугной капли на платиновом контакте.

Наиболее удовлетворительное амальгамирование достигается в растворе указанного выше состава при непрерывно меняющейся силе тока (от 1 до 10 *mA*) в течение 10—15 *сек*.

На рис. 3, *a*, *б*, *в* приводятся фотографии ртутных капель на платиновых контактах, испортившихся в процессе анализа; на рис. 3, *г* один из контактов амальгамирован по предложенной методике.

Методика приготовления электрода

После прокаливания электрода на платиновом контакте в насыщенном растворе Hg_2 (NO₃)₂ в течение 30 сек при токе 25 mA наращивается ртутная капля. Иногда ртуть не полностью покрывает поверхность контакта и капля наращивается неправильной формы (рис. 3). В этом случае капля тщагельно обмывается и переносится в электролизер с раствором для амальгамирования и в течение 10—15 сек при непрерывно меняющейся силе тока (от 1 до 10 m A) проводят дополнительное амальгамирование.

После двух-трехкратного амальгамирования капля стряхивается, электрод обмывается и переносится в раствор $Hg(NO_3)_2$, где обычным путем наращивается Hg-капля (i = 25 m A, $\tau = 30 ce\kappa$).

3. Заказ 5131.

Рис. 3, в. Ртутная капля сформирована на испортившемся контакте.

Рис. 3, г. Один из предварительно амальгамированных платиновых контактов.

Для следующих анализов капля с электрода стряхивается и наращивается новая капля без дополнительного амальгамирования.

Таким образом, прокаливание электрода и дополнительное амальгамирование значительно улучшает свойства платинового контакта.

Применение электрода, полученного по описанной методике, позволяет значительно повысить воспроизводимость анализов и чувствительность амальгамно-полярографических методик.

В заключение выражаем благодарность проф. А. Г. Стромбергу за ценные советы при выполнении и обсуждении работы.

ЛИТЕРАТУРА

1. А. Г. Стромберг, Э. А. Стромберг. Определение ультрамикроконцентра-ций вещества в растворе методом амальгамной полярографии на стационарном капель-

нии вещества в растворе методом амальтамной полярографии на стационарном канель-ном электроде при непрерывно меняющемся потенциале (обзор). Заводская лабора-тория, 27, 1, 1961. 2. А. Г. Стромберг, М. С. Захаров, Н. А. Месяц, А. А. Каплин, Р. С. Тютюнькова. Определение микропримесей Рb, Zn, Bi и Сu в индии методом амальгамной полярографии с накоплением на стационарной Hg-капле. Сборник трудов ИРЕА (в печати). 3. Rolf Neeb. Anodische Amalgamvoltamenetri Z. anal. Chem. 180, 161, 3, 1961.