И. П. ОНУФРИЕНОК, Л. Л. СКРИПОВА

новое в контроле щавелевокислого электролита гальванической ванны анодирования

(Представлена научным семинаром химико-технологического факультета)

Обычно в качестве электролита гальванической ванны анодирования употребляется раствор, содержащий 30 г/л щавелевой кислоты [1].

Во время работы ванны в щавелевокислом электролите могут накапливаться щавелевокислые соли алюминия, железа, магния. Часть этих солей находится в виде раствора (соли Al^{3+} , Fe^{3+} и частично Mg^{2+}), другая часть солей образует осадки (соли Fe^{2+} , Mg^{2+} и других двухвалентных катионов).

Если от осадков солей щавелевокислый раствор легко освободить периодическим фильтрованием, то от солей, находящихся в растворе, освободить электролит простыми операциями не представляется возможным. По-видимому, соли трехвалентных железа и алюминия могут накапливаться в растворе вплоть до использования всей свободной щавелевой кислоты. Что же касается солей магния, то, по нашим опытам, их может накапливаться в щавелевокислом растворе не более 0,6 г/л, большие количества магния уже выпадают в осадок в виде щавелевокислого магния.

В заводских лабораториях контроль щавелевокислого электролита обычно сводится к определению общего содержания оксалат-иона перманганатометрически и к определению алюминия. Последний осаждается о-оксихинолином с гравиметрическим окончанием. На основании этих двух определений судят о наличии свободной щавелевой кислоты. Если определение оксалат-иона занимает по времени 15 минут, то весовое определение алюминия требует не менее четырех часов. Таким образом, представление о наличии свободной щавелевой кислоты в электролите можно получить не ранее чем через 4 часа.

Работая над усовершенствованием контроля щавелевокислого электролита, мы нашли, что достаточное по точности представление о наличии свободной щавелевой кислоты можно получить при затрате всего 20—30 минут, а полный анализ электролита, с определениями оксалат-иона, свободной щавелевой кислоты, железа, алюминия и магния, можно произвести за 1—1,5 часа.

Изучение поведения щавелевокислых электролитов, составленных из определенных количеств свободной щавелевой кислоты и щавелевокислых солей алюминия, железа и магния при анализах показало, что: а) общее количество оксалат-иона точно определяется титрованием перманганатом в сернокислой среде; б) титрованием едким натрием

в присутствии индикатора фенолового красного точно определяется наличие свободной щавелевой кислоты; в) титрование едким натрием в присутствии фенолфталеина, как индикатора, дает сумму щавелевой кислоты свободной и связанной с ионами железа и алюминия (последнее определение является точным в отсутствии магния, в присутствии же магния получаются немного завышенные результаты); г) железо, алюминий и магний с достаточной точностью определяются комплексонометрически. Это позволило нам предложить нижеследующие ходы анализов для контроля щавелевокислых электролитов.

Определение общего содержания оксалат-иона

В коническую колбочку на 100~мл отбирают пипеткой 5~мл электролита, добавляют 20~мл 4 н. серной кислоты, нагревают до $70-80^\circ$ и титруют 0,1 н. раствором $KMnO_4$ до устойчивой слаборозовой окраски. Результаты подсчитывают на $H_2C_2O_4 \cdot 2H_2O$ по формуле

общая
$$H_2C_2O_4 \cdot 2H_2O$$
 г/л = $\frac{a_{\rm H} \cdot 63,03}{b}$,

где *а* и н. — количество *мл* и нормальность израсходованного раствора КМпО₄;

b — количество мл электролита, взятого для анализа; 63.03 — миллиграмм-эквивалент $H_{\circ}C_{\circ}O_{4} \cdot 2H_{\circ}O$.

Определение свободной щавелевой кислоты

В коническую колбочку на 100 мл отбирают пипеткой 5 мл электролита, добавляют 5 капель 0,1-процентного раствора индикатора фенолового красного и титруют 0,1 раствором едкого натрия до явно заметного перехода желтой окраски в красную. Результаты вычисляют по формуле

$$H_2C_2O_4 \cdot 2H_2O_{cBOO} \cdot z/A = \frac{a_1 \cdot H \cdot 63.03}{b}$$
,

где a_1 и н. — количество m n и нормальность раствора едкого натрия, пошедшего на титрование; b — количество m n электролита, взятого для анализа; 63.03 — миллиграмм-эквивалент $H_2C_2O_4 \cdot 2H_2O$.

Определение щавелевой кислоты, связанной с железом и алюминием

В коническую колбочку на 100 мл отбирают пипеткой 5 мл электролита, добавляют 5 капель 0,1-процентного раствора индикатора фенолфталеина и титруют 0,1 н. раствором едкого натрия до явной краснофиолетовой окраски. Расчет производят по формуле,

связанной с
$$\mathrm{Al^{3+}}$$
 и $\mathrm{Fe^{3+}}$ $\mathrm{H_2C_2O_4 \cdot 2H_2O}$ $\mathit{z/n} = \frac{(a_2 - a_1)\,\mathrm{H} \cdot 63{,}03}{\mathit{h}}$,

где a_2 —количество m_1 раствора NaOH, пошедшего на титрование с индикатором фенолфталеин; a_1 —количество m_1 раствора NaOH, пошедшего на титрование с индикатором феноловым красным; н.—нормальность раствора; 63,03—миллиграмм-эквивалент $H_2C_2O_4 \cdot 2H_2O$.

Определение железа и алюминия

В основу разработки метода определения железа и алюминия мы положили работу А. А. Башкирцева и Е. М. Якимец [2], которыми были

изучены условия определения этих элементов при помощи трилона-Б. Единственным затруднением было только то, что оксалат-ионы мешают комплексонометрическому определению железа и алюминия. Нам необходимо было выбрать такой окислитель для разрушения оксалатионов, чтобы продукты его взаимодействия не оказывали влияния на комплексонометрическое определение алюминия и железа, таким окис-

лителем оказался персульфат аммония.

Ход анализа. В жаростойкий химический стакан на 100 мл вводят пипеткой 20 мл электролита, 5 мл концентрированной серной кислоты и выпаривают на плитке до появления белых паров серной кислоты. Стакан остужают, осторожно обмывают стенки стакана небольшим количеством воды (10—20 мл) и всыпают туда 1 г персульфата аммония, стакан закрывают часовым стеклом и ставят на плитку, нагревают до полного разложения избытка персульфата аммония, затем, несколько сдвинув стекло, выпаривают до появления густых белых паров и остужают. Разбавляют водой 10—20 мл, прибавляют 1—2 мл концентрированной соляной кислоты и нагревают до полного растворения солей.

После растворения раствор переводят в коническую колбу на $250 \, \text{мл}$, где раствор нейтрализуют концентрированным аммиаком, а под конец разбавленным (1:10) аммиаком до pH = 1-2 (выносная проба

на бумажку универсального индикатора).

Далее пробу нагревают до 50—60°, прибавляют 1 мл 10%-ного раствора сульфосалицилата натрия, при наличии в пробе железа раствор окрашивается в фиолетово-вишневый цвет, затем пробу титруют 0,1 н. раствором трилона-Б до исчезновения фиолетово-вишневой окраски. Окраска в конце титрования становится почти желтой. Отмечают расход мл раствора трилона-Б, пошедшего на титрование железа. В пробе далее определяют алюминий, для чего в пробу вводят избыток раствора трилона-Б (10 мл), раствор нагревают до начала кипения, нейтрализуют разбавленным (1:10) аммиаком до рН=5 (выносная проба на бумажку универсального индикатора), после этого к раствору прибавляют 10 мл ацетатного буферного раствора с рН=4,8 и охлаждают под краном до комнатной температуры. Холодный раствор титруют 0,05 н. раствором хлюрного железа до появления устойчивой слабо-вишнево-фиолетовой окраски (переход довольно резкий). Содержание железа и алюминия подсчитывают по формулам:

$$Fe^{3+} s z/\Lambda = \frac{a \cdot H \cdot 27,925}{b},$$

где a и н. — объем в $M\Lambda$ и нормальность раствора трилона-Б, пошедшего на титрование железа:

27,925-миллиграмм-эквивалент железа;

b – объем в $\mathit{мл}$ электролита, взятый для анализа,

$$A1^{3+} s z/\Lambda = \frac{(a_1 H. - \delta H') \cdot 13,485}{b},$$

где a_1 и н. — объем в m_1 и нормальность избытка раствора трилона-Б, взятого для определения алюминия;

о и н.' — объем в мл и нормальность раствора хлорного железа, пошедшего на титрование;

13,485-миллиграмм-эквивалент алюминия;

b—объем электролита в $M\Lambda$, взятый для анализа.

Ацетатный буферный раствор готовится смешением 2 н. раствора уксуснокислого натрия и 2 н. раствора уксусной кислоты (1:1).

Определение магния

В химический стакан на 100 мл отбирают пипеткой 10 мл электролита, добавляют 20 мл воды, 5 мл концентрированной НС1 и 5 мл концентрированного аммиака, нагревают до кипения и осаждают гидроокиси железа и алюминия аммиаком до ощутимого запаха избытка аммиака. После 2—3-минутного отстаивания осадок отфильтровывают, промывают 4—6 раз 2-процентным горячим раствором хлористого аммония. Фильтрат собирают в коническую колбу на 250 мл. После охлаждения к фильтрату добавляют 5 мл хлоридно-аммиачного буферного раствора, щепотку индикатора эрио-хром черного Т, растертого с КС1 в соотношении (1:100) и затем титруют 0,1 н. раствором трилона-Б до перехода вишнево-красной окраски в чисто синюю. Содержание магния подсчитывают по формуле.

$$Mg^{2+} s z/n = \frac{a \cdot H \cdot 12,16}{b},$$

где *а* и н.—объем в *мл* и нормальность раствора трилона-Б, пошедшего на титрование магния;

12,16-миллиграмм-эквивалент магния;

b—объем электролита, взятый для определения магния.

Хлоридно-аммиачный буферный раствор готовят растворением 20 г NH₄Cl и 100 мл концентрированного аммиака в воде, с последующим доведением объема раствора до 1 литра.

Применяя вышеизложенные методы контроля к щавелевокислым электролитам, содержащим определенные количества свободной щавелевой кислоты и ее солей, мы получили данные, приведенные в табл. 1 и 2. В табл. 1 помещены данные для электролита, содержащего щавелевую кислоту и ее соли с Fe^{3} и Al^{3} н.

Таблица 1

Название определений	Взято, г/л	Получено, г/л	Ошибка относитель- ная в %	Расход титрованных 0,1 н. растворов на 5 мл электролита, мл	
Общая H ₂ C ₂ O ₄ ·2H ₂ O	29,9000	30,0294	+0,40	23,82	KMnO ₄
Свобод. H ₂ C ₂ O ₄ ·2H ₂ O	24,7020	24,6573	-0,18	19,56	NaOH
Щавелевой кислоты, свя-				23,71-19.56=	
анной с $A1^{3+}$ и Fe^{3+}	5,1980	5,2314	+0,65	=4,15	NaOH
Fe ³⁺	0,5000	0,5026	+0,52	0,88	Трилон-Б
A1 ³⁺	0,5000	0,4948	-1,04	1,83	Трилон-Б

В табл. 2 приведен анализ электролита, содержавшего щавелевую кислоту и ее соли с Fe³⁺. Al³⁺ и Mg²⁺. Из данных табл. 1 и 2 видно, что содержание свободной щавелевой кислоты определяется довольно точно даже в присутствии значительных количеств магния в электролите и для внутрицехового контроля достаточно одного этого определения. Титрование же пробы едким натрием с индикатором фенолфталеин и предварительное определение свободной щавелевой кислоты дает возможность судить о загрязнении ванны железом и алюми-

нием. Эти два определения можно сделать за 15-20 минут и, следовательно, есть полная возможность быстро корректировать ванну. Изредка для контроля можно ставить полный анализ.

Таблица 2

Взято, г/л	Получено, г/л	Ошибка относи- тельная в %	Расход титрованных 0,1н. растворов на 5 мл электролита, мл	Титрант			
30,0000	30,0779	+0,86	23,86	KMnO ₄			
22,2100	21,6192	-2,60	17,15	NaOH			
			21,41-17,15=				
5,1980	5,3700	+3,30	=4,26	NaOH			
0,5000	0,5026	+0,52	0,88	Трилон-Б			
0,5000	0,4928	-1,44	1,83	Трилон-Б			
0,5000	0,4937	-1,26	2,03	Трилон-Б			
	30,0000 22,2100 5,1980 0,5000 0,5000	z/л z/л 30,0000 30,0779 22,2100 21,6192 5,1980 5,3700 0,5000 0,5026 0,5000 0,4928	Взято, г/л Получено, г/л относительная в % 30,0000 30,0779 +0,86 22,2100 21,6192 -2,60 5,1980 5,3700 +3,30 0,5000 0,5026 +0,52 0,5000 0,4928 -1,44	Взято, г/л Получено, г/л Полу			

Выводы

- 1. Разработаны быстрые методы контроля щавелевокислых электролитов гальванических ванн анодирования, обладающие достаточной точностью.
- 2. Для цехового контроля достаточно двух титрований электролита 0,1 н. раствором едкого натрия с индикаторами феноловым красным (определяется свободная щавелевая кислота) и с индикатором фенолфталеином (определяется сумма свободной щавелевой кислоты и кислоты, связанной с железом и алюминием).

ЛИТЕРАТУРА

1. Г. Т. Бахвалов, Л. Н. Биркган, В. П. Лабурин. Справочник гальванотехника. Металлургиздат, М., 214—219, 1954.
2. А. А. Башкирцева и Е. М. Якимец. О трилонометрическом опредолении алюминия. Ж. зав. лаб., № 10, 1166, 1959.