В. И. БАБУРОВ, В. Ф. ГОРБУНОВ

К МЕТОДИКЕ РАСЧЕТА ОСНОВНЫХ ПАРАМЕТРОВ РУБИЛЬНО-КЛЕПАЛЬНЫХ МОЛОТКОВ

(Представлено кафедрой горных машин и рудничного транспорта)

Исследования рабочих процесов и конструкций пневматических бурильных [2, 4], отбойных [5, 6] и рубильно-клепальных молотков [3] позволили составить ряд основных зависимостей для выбора и расчета их

В данной статье приводится номограмма, отображающая зависимости между основными параметрами рубильно-клепальных молотков,

принцип ее построения и правила работы с ней.

Пользование номограммой поможет конструкторам быстро выбирать основные параметры рубильно-клепальных молотков в зависимости от их конструктивных размеров. Это важно особенно для конструкторов тех заводов, которые изготавливают молотки. Часто, изготавливая молотки собственных конструкций для рубки и клепки, производственники не знают даже примерных их параметров.

Расчет параметров предлагается строить на основании известных

зависимостей [1, 2, 6]

$$A = \kappa_1 p F S_{\text{кон}}, \ \kappa \Gamma M \tag{1}$$

$$n = \frac{\kappa_2 \cdot 60}{1 + \gamma} \sqrt{\frac{pF}{mS_{\text{KOH}}}}, \ y\partial/\text{MuH}, \tag{2}$$

$$N = \frac{An}{60.75}, \ n. \ c., \tag{3}$$

где κ_1 — коэффициент потерь энергии, учитывающий степень наполнения цилиндра сжатым воздухом и механические потери при оптимальных режимах работы молотов. Для рубильно-клепальных молотков $\kappa_1 = 0.5 - 0.55$;

p — давление воздуха в сети, $a\tau u$; F — площадь поперечного сечения полости ствола молотка, $c M^2$;

 $\mathcal{S}_{\text{кон}}$ — конструктивный ход ударника, представляющий собой разность между длиной полости (за вычетом длины хвостовика инструмента) и длиной ударника, м;

 κ_2 — коэффициент, учитывающий снижение частоты ударов за счет механических потерь и степень наполнения полостей сжатым воздухом. Для рубильно-клепальных молотков $\kappa_2 = 0.75$;

ү — отношение времени обратного и прямого ходов ударника, $\gamma = 1.6;$

 $m = \frac{Q}{g}$ — масса ударника, $\kappa e \cdot ce\kappa^2/m$; A — энергия удара, $\kappa \Gamma m$; n — частота ударов в минуту; N — ударная мощность, α . c.

На рис. 1 представлена номограмма, составленная на основе формул (1—3). Номограмма имеет 4 четверти. В первой четверти изображена графическая зависимость энергии удара от длины конструктивного

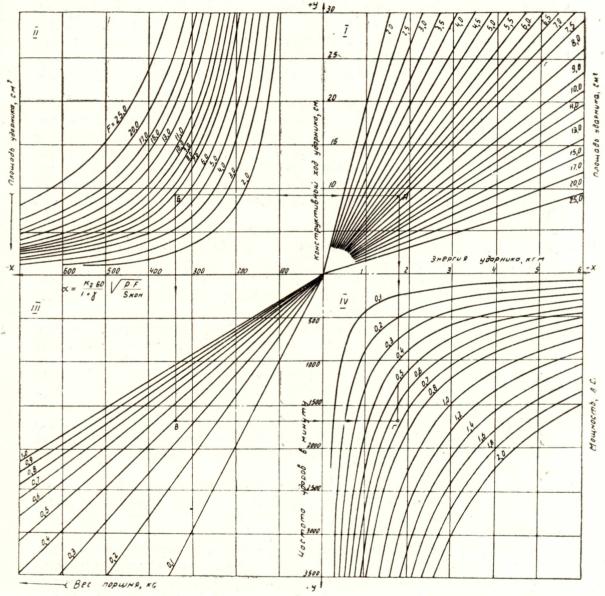


Рис. 1. Номограмма для расчета основных параметров пневматических рубильно-клепальных молотков.

хода ударника при различных значениях полезной площади поперечного сечения цилиндра молотков. Эта зависимость построена на основании формулы (1). Коэффициент потерь принят $\kappa_1 = 0.52$.

Для подобных молотков с одинаковым диаметром ствола (ударника) значения κ_1 ; p и F будут постоянными. Следовательно, энергия удара в зависимости от длины конструктивного хода бойка будет изменяться по линейному закону. Это положение подтверждается и экспериментами.

Частота ударов в минуту определяется по зависимостям II и III четвертей номограммы (рис. 1), построенных, исходя из формулы (2). При этом выделялась промежуточная величина

$$\alpha = \frac{\kappa_2 \cdot 60}{1 + \gamma} \sqrt{\frac{pF}{S_{\text{KOH}}}}.$$
 (4)

Для различных значений площади поперечного сечения полости ствола молотка строим зависимости между конструктивным ходом ударника и промежуточной величиной α (четверть II, рис. 1) и затем находим частоту ударов в минуту в зависимости от α при различных значениях веса (массы) ударника m (четверть III, рис. 1).

В четвертой четверти построены зависимости частоты и энергии уда-

ров по формуле (3).

Номограмма построена для давления воздуха в сети равного 5 $\alpha \tau u$. Для расчета параметров пневматических рубильно-клепальных молотков необходимо знать длину конструктивного хода, вес ударника и площадь поперечного сечения цилиндра. В этом случае расчет начинается с оси $+\mathcal{Y}$ (рис. 1), где откладывают длину хода. Пересечение горизонтальной линии с лучом, несущим площадь сечения бойка в первой четверти, дает точку A, проекция которой на ось +X отсечет на оси величину энергии удара молотка.

Во второй четверти по известной длине хода и площади ударника на оси — X определяют промежуточную величину α , входящую в формулу числа ударов молотка (2). Продолжая вертикальную линию от точки B в третью четверть до пересечения с лучом, несущим вес ударника (поршня), получают точку B, и проектируя ее на ось —Y, отыски-

вают частоту ударов молотка.

В четвертой четверти пересечение перпендикуляров к осям — Y и +X от найденных значений n и A даст точку Γ , обозначающую величину

ударной мощности молотка.

Для определения размеров проектируемых молотков необходимо задаваться некоторыми желательными характеристиками. Например, можно задаться определенной величиной энергии удара и площадью поперечного сечения ударника и по номограмме найти другие параметры будущего молотка. По заданным параметрам энергии и частоты ударов возможно определить несколько конструктивных вариантов ударного узла и из них выбрать лучший.

Расчет основных размеров пневматических бурильных молотков по номограммам с логарифмическими шкалами [1] также возможно применить для расчета клепальных молотков, но предварительно необходимо

скорректировать коэффициенты.

В табл. 1 помещены технические характеристики рубильных и клепальных молотков и их параметры, найденные по номограммам. Отклонения в значениях параметров колеблются от 0% до 20%. Как видно из табл. 1, разность между значениями параметров, найденных по номограмме и экспериментальным путем, несколько меньше отклонений расчетных данных от заводских характеристик. Следует обратить внимание на тот факт, что имеются еще данные заводских лабораторных испытаний, в результате которых для клепальных молотков, например, были получены следующие значения параметров.

1) KE-32
$$A=4,24\ \kappa\Gamma m,$$
 $n=920\ y\partial/muh;$
2) KE-28 $A=3,3\ \kappa\Gamma m,$ $n=1075\ y\partial/muh;$
3) KE-16 $A=1,3\ \kappa\Gamma m,$ $n=1950\ y\partial/muh.$

Тип молотка	Значения параметров							
	энергия удара, кГм				частота ударов в минуту			
	дан- ные заво- да	экспе- римен- тальные данные	расчет- ные по номо- грамме	среднее откло- нение в % *)	данные завода	экспе- римен- тальные данные	расчет- ные по номо- грамме	среднее откло- нение в % % *)
MP-4	0,9	0,90	0,75	$\frac{-16}{-16}$	3500	3220	3300	$\frac{-8}{+2}$
MP-5	1,2	1,36	1,30	$\frac{+8}{-4}$	2200	2280	2100	<u>-4</u> <u>-8</u>
MP-6	1,6	1,60	1,90	$\frac{+18}{+18}$	1600	1600	1550	<u>-3</u> -3
KE-16	1,25	1,20	1,20	$\frac{-4}{0}$	1900	1850	1980	$\frac{+7}{+4}$
KE-19	2,1	1,80	1,80	$\frac{-14}{0}$	1500	1400	1500	$\frac{0}{+7}$
KE-22	2,7	2,80	2,60	$\frac{-4}{-7}$	1100	1120	1200	$\frac{+9}{+7}$
KE-28	3,0	3,10	3,2	$\frac{+6}{+3}$	950	850	1050	$\frac{+10}{+19}$
KE-32	3,8	4,0	4,1	$\frac{+8}{+2}$	800	810	930	$\frac{+16}{+15}$

*) В числителе — отклонение значений параметров, найденных по номограмме, от заводских данных, в знаменателе - отклонение тех же параметров от экспериментальных данных.

Из приведенных примеров видно, что средние отклонения параметров, найденных по предлагаемой номограмме, не превышают в основном 10%, а результаты расчета лежат в пределах значений, получаемых различными экспериментальными методами.

ЛИТЕРАТУРА

1. О. Д. Алимов, А. А. Алимова, В. Ф. Горбунов. К методике расчета основных параметров пневматических бурильных молотков. Межвузовский сборник трудов. Механизмы и машины ударного, вращательного и вращательно-ударного действия. Новосибирск, 1963.

2. О. Д. Алимов, И. Г. Басов, В. Ф. Горбунов, Д. Н. Маликов. Бу-

рильные машины. Госгортехиздат, 1960.
3. В. И. Бабуров, В. Ф. Горбунов. Исследование внутренних процессов и параметров рубильных и клепальных молотков. Известия ТПИ, т. 123, Изд. Томского университета, 1963.
4. В. Ф. Горбунов. Экспериментальные исследования рабочего процесса пнев-

матических бурильных молотков. Канд. диссертация, Томск, 1958.

5. Б. В. Суднишников. Некоторые зависимости, вытекающие из особенностей индикаторных диаграмм пневматических молотков. Сб. «Машины ударного действия», Новосибирск, 1953. 6. Б. В. Суднишников и Л. И. Семенов. Расчет пневматического отбойно-

го молотка. Сб. «Машины ударного действия», Новосибирск, 1953.