Доктор техн. наук И. Д. КУТЯВИН, аспирант Г. В. ДЕЛЬ, аспирант В. П. КРАСНОВ.

К ТЕХНИКО-ЭКОНОМИЧЕСКОМУ ОПРЕДЕЛЕНИЮ ОПТИМАЛЬНЫХ РАЗМЕРОВ ПОДСТАНЦИОННЫХ ТРЕХФАЗНЫХ ДВУХОБМОТОЧНЫХ ТРАНСФОРМАТОРОВ БОЛЬШОЙ мощности

Технико-экономическое определение оптимальных размеров трансформаторов можно произвести путем минимизации выражения расчетных затрат [1], учитывающих расходы на производство и эксплуатацию трансформатора, а также капиталовложения на добавочную мощность системы с топливной базой.

$$3 = (A_1 + D B^2) Q_c + (\beta A_2 + E \Delta^2_1) Q_{M1} + \beta A_2 + E \Delta^2_2) Q_{M2}, \qquad (1)$$

где A_1, A_2, D, E, β — постоянные [1]; B — индукция в стержне, $z\dot{c}$;

 Δ_1 , Δ_2 — плотности тока первичной и вторичной обмоток, a/cm^2 ;

 $Q_{\rm c}$ — вес стали сердечника, κz ; $Q_{\rm M1}$ и $Q_{\rm M2}$ — вес проводникового материала первичной и вторичной обмоток, кг.

В данной статье изложена попытка авторов распространить метод, изложенный в [1], на трансформаторы большой мощности с непрерывными катушечными и винтовыми концентрическими обмотками [2], так как обе эти разновидности обмоток описываются одинаковыми математическими зависимостями.

На рис. 1 изображено взаимное расположение обмоток фазы и размеры катушек. При этом обмотка низшего напряжения может быть винтовой или непрерывной катушечной. Очевидны следующие зависимости между элементарными размерами трансформатора.

Высота окна сердечника (все размеры в сантиметрах).

$$H=h+2 L_{\rm H} , \qquad (2)$$

где h — высота обмотки и $L_{\rm H}$ — изоляционное расстояние от обмоток до ярма.

Ширина окна сердечника

$$a=2(x_1+x_2+l_1);$$
 (3)

где x_1 и x_2 — ширина катушек обмоток фазы (рис. 1); l_г — половина радиальных изоляционных расстояний в окне.

Длина среднего витка обмоток фазы

$$l_{\rm M} = \pi (d + 0.5x_1 + 1.5x_2 + l), \tag{4}$$

тде
$$l=2\,\delta_{20}+\delta_{12}$$
, (5)

d — диаметр стержня.

Длина стали сердечника, приведенная к площади сечения стержня

$$l_c = 3H + k_g (4a + 5.6d) 3h + k_g [8(x_1 + x_2 + l_r) + 5.6d] + 6l_u$$
, (6)

где $\kappa_{\rm g}$ — коэффициент увеличения площади сечения ярем.



Рис. 1.

Площади сечения материала обмоток фазы

$$q_{M1} = \frac{k_1 y_1}{y_1 + \delta_1} x_1 h u q_{M2} = \frac{k_2 y_2}{y_2 + \delta_2} x_2 h, \qquad (7)$$

где κ_1 и κ_2 — коэффициенты заполнения проводниковым материалом площадей сечений катушек первичной и вторичной обмоток фазы;

 y_1 и y_2 — высоты катушек обмоток фазы (рис. 1);

 δ_1 и δ_2 — высоты радиальных охлаждающих каналов между катушками.

Площадь сечения стали стержня

$$q_{\rm c} = k_{\rm c} \frac{\pi d^2}{4} , \qquad (8)$$

тде $\kappa_{\rm c}$ — коэффициент заполнения сталью площади круга с диаметром d .

Уравнение теплового баланса катушки обмотки (на погонный сантиметр среднего витка)

$$2 \circ (\mathbf{k_x} \ x + \mathbf{k_y} \ y) = \rho \Delta^2 k x y , \qquad (9)$$

где σ — расчетная плотность теплового потока с поверхности катушки, $\theta T/c M^2$;

ρ — удельное сопротивление материала обмоток, ом⋅см;

 $k_{\rm x}$ и $y_{\rm y}$ — коэффициенты, учитывающие закрытие части поверхностей x и y изоляционными деталями.

Допустимые плотности тока в обмотках фазы (a/cm^2) на основании (9):

$$\Delta_{1} = \sqrt{\frac{2 \sigma_{1} (k_{x1} x_{1} + k_{y1} y_{1})}{\rho k_{1} x_{1} y_{1}}} = \alpha_{1} \sqrt{\frac{z_{1}}{x_{1} y_{1}}}$$

$$\Delta_{2} = \sqrt{\frac{2 \sigma_{2} (k_{x2} x_{2} + k_{y2} y_{2})}{\rho k_{2} x_{2} y_{2}}} = \alpha_{2} \sqrt{\frac{z_{2}}{x_{2} y_{2}}}$$

$$(10)$$

где $z_1 = k_{\text{м1}} x_1 + y_1; z_2 = k_{\text{м2}} x_2 + y_2;$

$$\alpha_{1} = \sqrt{\frac{2 \sigma_{1} k_{y1}}{\rho k_{1}}}; \alpha_{2} = \sqrt{\frac{2 \sigma_{2} k_{y2}}{\rho k_{2}}}; k_{n1} = \frac{k_{x1}}{k_{y1}}; k_{n2} = \frac{k_{x2}}{k_{y2}}$$
(11)

Выражение для мощности трансформатора в ква

$$S = K \Delta_1 \ q_{M1} \ q_{C} = K \Delta_2 \ q_{M2} \ q_{C} \ . \tag{12}$$

Подставив в (12) переменные, найдем высоту обмотки

$$h = \frac{N (y_2 + \delta_2)}{d^2 V x_2 y_2 z_2} , \qquad (13)$$

где
$$N = \frac{4 S}{K k_c k_2 \pi \alpha_s}$$
 и $K = 13,32 f B \cdot 10^{-11}$. (14)

Реактивная составляющая напряжения короткого замыкания (в относительных единицах) приводится к следующему виду:

$$u_{\rm p} = \frac{2 k_{\rm r} \Delta_2 q_{\rm M2} l_{\rm M} (x_1 + x_2 + 3 \delta_{12})}{3,33 b q_{\rm c} k}, \qquad (15)$$

где $\kappa_{\rm r}$ — коэффициент Роговского;

 δ_{12} — изоляционное расстояние между обмотками фазы.

После подстановки переменных найдем из (15) диаметр стержня:

$$d = \frac{U + \sqrt{U^2 + 4PUV(y_2 + \delta_2)}}{2P(y_2 + \delta_2)}, \qquad (16)$$

где
$$U = \sqrt{x_2 y_2 z_2} \quad (x_1 + x_2 + 3 \delta_{12}) ,$$

$$V = 1.5 x_2 + 0.5 x_1 + l ,$$

$$P = \frac{3.33 B k_c u_p}{8 k_1 k_2 \alpha_2} .$$
(17)

Определим теперь веса активных материалов.

Вес стали сердечника в кг:

$$Q_{c} = \gamma_{c} \ q_{c} \ l_{c} \ 10^{-3} = \frac{k_{c} \ \pi \ \gamma_{c}}{4} \cdot 10^{-3} \left\{ \frac{3 \ N \left(y_{2} + \delta_{2} \right)}{V x_{2} \ y_{2} \ z_{2}} + d^{2} \left[8 \ k_{R} \left(x_{1} + x_{2} + l_{r} \right) + 5.6 \ k_{R} \ d + 6 \ l_{u} \right] \right\}.$$

$$(18)$$

Веса проводникового материала обмоток трансформатора в кг.

$$Q_{\text{M1}} \cong 3 \, \gamma_{\text{M}} \, q_{\text{M1}} \, l_{\text{M1}} \, 10^{-3} \cong m_1 \, \frac{y_1 + \delta_1}{z_1 \, (x_1 + x_2 + 3 \, \delta_{12})} \,,$$

$$Q_{\text{M2}} \cong 3 \, \gamma_{\text{M}} \, q_{\text{M2}} \, l_{\text{M2}} \, 10^{-3} \cong m_2 \, \frac{y_2 + \delta_2}{z_2 \, (x_1 + x_2 + 3 \, \delta_{12})} \,,$$

$$(19)$$

 $m_1 \simeq \frac{10 \, \gamma_{\rm M} \, B \, u_{\rm p} \, S \cdot \rho \cdot 10^{-3}}{4 \, K \, k_{\rm r} \, k_{\rm v} \, 1 \, \sigma_1} \, ,$ (20) $m_2 \simeq \frac{10 \, \gamma_{\rm M} \, B \, u_{\rm p} \, S \, \rho \, 10^{-3}}{4 \, K \, k_{\rm p} \, k_{\rm p} \, \sigma_{\rm p}}$.

Интересно подчеркнуть здесь, что, как это видно из (19), вес проводникового материала обмотки (пои постоянстве исходных данных) прямо пропорционален шагу катушки $(y+\delta)$ и обратно пропорционален полупериметру катушки (г) и приведенному каналу рассеяния обмоток $(x_1+x_2+3 \delta_{12})$.

В результате веса активных материалов и основные трансформатора оказались выраженными через размеры катушек обмоток x_1, y_1, x_2 и y_2 . Одну из этих переменных можно еще исключить, воспользоваещись условием равенства намагничивающих обмоток фазы:

$$\frac{\kappa_1 x_1 y_1}{v_1 + \delta_1} \Delta_1 = \frac{\kappa_2 x_2 y_2}{v_2 + \delta_2} \Delta_2. \tag{21}$$

Тогда останется еще три независимых переменных. Исследование на минимум расчетных затрат (1), являющихся функцией трех независимых переменных, при сложности выражений для Q_c и Q_m , представляет большую трудность. В связи с эим рассмотрим здесь частный случай, когда $\Delta_1 = \Delta_2$. Этот случай соответствует задаче наиболее рационального использования проводникового материала и в значительной степени совпадает с заводской практикой. Имея в виду, что κ_2 практически не зависит от мощности трансформатора, в качестве независимых переменных выгодно принять x_2 и y_2 . Тогда из (21) при $\kappa = \kappa_2 : \kappa_1$.

$$y_1 = \frac{k \, \delta_1 \, x_2 \, y_2}{x_1 \, (y_2 + \delta_2) - k \, x_2 \, y_2} \, . \tag{22}$$

Решив совместно (10) и (22) при $k_{\pi 1} = k_{\pi 2}$; $k_{y 1} = k_{y 2}$; $\sigma = \frac{\sigma_2}{\sigma_2}$ и $\Delta_1 = \Delta_2$ находим выражение для x_1 :

$$x_{1} = \frac{(k_{\text{II}} k x_{2} y_{2} + \sigma \delta_{1} z_{2}) + \sqrt{(k_{\text{II}} k x_{2} y_{2} + \sigma \delta_{1} z_{2})^{2} - 4k_{\text{II}} k \delta_{1} x_{2} y_{2} (y_{2} + \delta_{2})}}{2 k_{\text{II}} (y_{2} + \epsilon_{2})}$$
(23)

Выражение расчетных затрат (1) при принятых допущениях:

$$3 = (A_1 + D B^2) Q_c + (\beta A_2 + E \Delta^2) Q_M =$$

$$= \frac{k_c \pi \gamma_c}{4} 10^{-3} (A_1 + D B^2) \cdot \varphi (x_2, y_2), \qquad (24)$$

тде
$$\varphi(x_2, y_2) = 3 N (y_2 + \delta_2) \left[\frac{1}{\sqrt{x_2 y_2 z_2}} + \frac{M \left(n + m \frac{z_2}{x_2 y_2} \right)}{z_2 (x_1 + x_2 + 3 \delta_{12})} \right] + d^2 \left\{ k_{\mathfrak{g}} \left[8 \left(x_1 + x_2 + l_{\mathfrak{g}} \right) + 5,6 d \right] + 6 l_{\mathfrak{g}} \right\}$$
 (25)

Здесь:
$$M = \frac{8 k_2 P \gamma_M}{k_c \gamma_c}$$
; $n = \frac{\beta A_2}{A_1 + D B^2}$; $m = \frac{E \alpha_2^2}{A_1 + D B^2}$. (26)

Определение критических значений x_2 и y_2 , соответствующих минимальным расчетным затратам (24), можно произвести путем минимизации функции (25). Однако общее аналитическое решение этой задачи не представляется возможным в виду ее сложности. Поэтому в пределах данной статьи рассмотрим численное определение критических значений x_2 и y_2 для ряда подстанционных двухобмоточных трансформаторов 110 κs без устройств для регулирования напряжения.

Численное исследование (25) на минимум производилось на счетно-решающей машине (СО АН СССР) для трансформаторов с сердечниками из холоднокатанной стали при следующих исходных данных (размерности в предыдущем тексте): $\kappa_{\rm c}=0.82$; $\kappa_{\rm x\,1}=\kappa_{\rm x\,2}:=0.7$; $k_{\rm y\,1}=\kappa_{\rm y\,2}=0.9$; $\kappa_{\rm g}=1.05$; $\kappa_{\rm z}=0.8$; $\kappa_{\rm m}=0.7$ [3]; $\kappa_{\rm H}=0.8$ [3]; $k_{\rm f}=0.95$; $\kappa_{\rm T}=0.7$; $\delta_{\rm 1}=0.8$; $\delta_{\rm 2}=0.6$; $\delta_{\rm 02}=1.5$; $\delta_{\rm 12}=5$; $\delta_{\rm 11}=6$; $l_{\rm H}=9$; $u_{\rm p}=0.105$; $l_{\rm H}=0.125$; $l_{\rm H}=0.000$; l_{\rm

Значения принятого коэффициента κ_1 для трансформаторов различной мощности S с обмотками из меди и алюминия приведены в таблице N1.

Таблица № 1.

S (мгва)	5,6	10	20	31,5 и выше
k_1 (медь) k_1 (алюм.)	0,4	0,48 0,50	0,53 0,55	0,6 0,6

Принято для меди: $\rho_{\text{M}} = 2,14\cdot10^{-6}$; $\alpha_{\text{M}} = 2,4\cdot10^{-7}$ квт/кг; $\gamma_{\text{M}} = 8,9$; $\beta = 3,2$; $\sigma_1 = \sigma_2 = 0,15$.

Принято для алюминия: $\rho_a=3,6\cdot 10^{-6};$ $\alpha_a=1,33\cdot 10^{-6}$ $\kappa e \tau/\kappa z;$ $\gamma_a=2,7;$ $\beta=4;$ $\sigma_1=\sigma_2=0,14.$

Исследование (25) производилось в области $x_2=3-10$ и $y_2=0,5+10$ с интервалом через 0.5. Результаты исследования приведены на рисунках 2—6. На рис. 2 приведена зависимость $\varphi\left(x_2,\ y_2\right)$ от x_2 при $y_2=1,5$ для трансформаторов мощностью 5,6+60 мгва с обмотками из меди, а на рис. 3 с обмотками из алюминия при $y_2=2$. Как видно из этих фигур величина $\varphi\left(x_2,\ y_2\right)$ имеет минимум при некото-

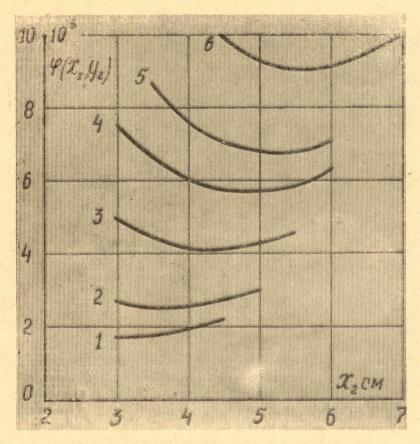


Рис. 2. Кривая 1 для трансформатора 5,6 мва; $2-10;\ 3-20;\ 4-31,5;\ 5-40,5;\ 6-60$ мва (медь).

рых x_2 , зависящих от мощности трансформатора. При этом расчетное значение x_2 можно принимать отличным от критического по крайней мере на ± 0.5 см без существенного увеличения расчетных затрат. Но надо иметь в виду, что уменьшение x_2 для данного трансформатора ведет к понижению расхода активных материалов и к резкому увеличению высоты сердечника, а увеличение x_2 — к обратным результатам.

Зависимость критических значений x_2 от мощности трансформатора с обмотками из меди и алюминия по данным рисунков 2 и 3 приведена на рис. 6 и может быть использована для определения расчетного x_2 .

На рисунках 4 и 5 приведена зависимость от y_2 минимальных значений φ (x_2 , y_2) найденных по x_2 . Эта зависимость также имеет минимум, который для трансформаторов разной мощности с обмотками из меди находится в пределах $y_2 = 1.5 + 2$. Как видно из рис. 4, минимум по y_2 настолько тупой, что расчетное значение y_2 может сильно отличаться от критического, особенно в сторону увеличения. Так, при увеличении значения функции (25) над наименьшим минимумом на 2% для трансформаторов с обмотками из меди 5.6 + 60 мгва расчетное y_2 может быть принято в пределах от 1 до 3 см.

Для трансформаторов с обмотками из алюминия мощностью 5.6-31.5 мгва (рис. 5) минимальное значение функции (25) находится около $y_2=5$. При увеличении минимума (25) над наименьшим его значением на 2%, можно принять расчетное значение $y_2=2+10$.

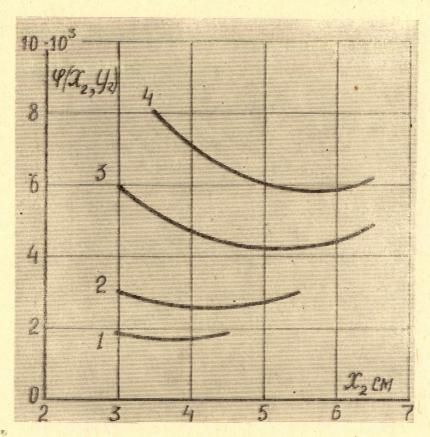


Рис. 3. Кривая 1 для трансформатора 5,6 мва; $2-40;\ 3-30;\ 4-31,5$ мва (алюминий).

Это свойство функции (25) очень важно, так как с уменьшением расчетного значения y_2 резко снижается расход проводникового материала и вес трансформатора.

В таблице 2 приведены основные размеры некоторых подстанционных трансформаторов с обмотками из меди и алюминия, вычисленные по изложенной выше методике.

Расчетное значение y_2 принято с превышением расчетных затрат над минимальными не более 2% и для трансформаторов с обмотками из меди равно 1 cm, а с обмотками из алюминия 2 cm.

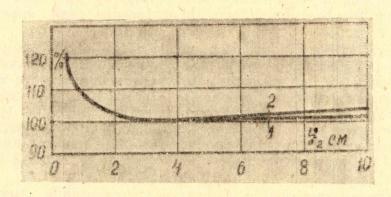


Рис. 4. Кривая 1 для трансформатора 5,6 мва; 2 — 60 мва (медь).

В пункте 9 таблицы 2 высота обмотки h увеличена на 5% до h' для размещения транспозиции обмотки низшего напряжения и для усиления изоляции и снижения плотности тока в крайних катушках обмотки высшего напряжения. Подобным же способом можно учесть высоту стержня для размещения регулировочных витков обмотки.

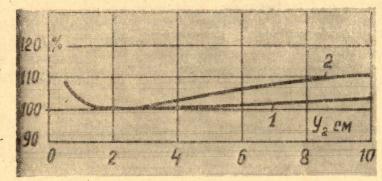


Рис. 5. Кривая 1 для трансформатора 5,6 мва; 2 — 31,5 мва (алюминий).

В пункте 18 указано механическое напряжение в материале обмоток, вызываемое радиальными усилиями, возникающими при коротком замыкании за трансформатором. Это напряжение определялось по выражению [3], приведенному к следующему виду:

$$\sigma_{\rm p} = C \frac{\Delta^2_1 q_{\rm M1} l_{\rm M}}{h} , \qquad (27)$$

где $C \simeq 5,7 \cdot 10^{-6}$ — постоянная.*)

Как видно из этой таблицы, напряжения в материале обмоток для исследовавшихся мощностей трансформаторов оказались в пределах допустимых.

Таблица 2.

-					-	THE PARTY NAMED IN	-	-	
п/п.	는 100mm (100mm) 전 100mm (100mm) 전 100mm) 전 100mm (100mm) 전 100mm) 전 100mm (100mm) 전 100mm (100mm) 전 100mm) 전 1		Обмотки из меди				Обмотки из алюминия		
Z			20	31,5	60	5,6	20	31,5	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	y_2 принято, c_M x_2 по рис. 6, c_M x_1 из (23), c_M y_1 из (22), c_M $\Delta_1 = \Delta_2$ из (10), a/c_M^2 d из (16), c_M h из (13), c_M $h_1 = 1,05$ h , c_M H из (2), c_M a из (8), c_M l_M из (4), c_M l_C из (6), c_M $q_{M1} = q_{M2}$ из (7), c_M^2 q_C из (8), c_M^2	1 3,0 5,15 2,14 416 33,5 112 118 136 35,3 152,5 731 168 723	1 4,4 6,3 1,67 397 49,0 134 141 159 40,4 210 912 294 1515	1 5,0 6,7	5,6 7,55 1, 8 388 64,5 188 197 215 45,3 266 1187 526 2680	2 3,7 6,45 4,16 238 33,2 128 135 153 39,3 157 803 291 710	2 5,0 7,1 2,97 235 45 193 203 221 43,2 20 ₁ ,5 1089 594 1300	2 5,7 7,6 2,67 229 51 211 221 239 45,6 224 1185 739 1670	
15	$Q_{\rm M}=6 \gamma_{\rm M} q_{\rm M} l_{\rm M}, T$	1,37	3,3	4,49	7.48	0.74			
16	$Q_{c} = \gamma_{c} \ q_{c} \ l_{c} , T$	4,07	10,8	15,5	24,3	4,36			
17	ор из (27), кг/см ² Рс (потери в стали квт)	226	415	521	640	115	195	235	
18		8,86 57,1	23,5 125	33,7	52,8	9,5 56	23,5	33,1 187	
	10. 그리아 등의 사람인 전에 가장 살 보이고 있습니다. 이 전에 되었다면 보다 하게 되었다면 보다 있다. [1]	2980			The Car		- Lorenz land	10520	
20	о из (1), руб.	2980	7350	10180	16320	3120	7600	10320	

^{*)} Отношение напряжений в материале обмоток $\mathfrak{o}_{\mathsf{p}\,1}: \sigma_{\mathsf{p}\,2} = \Delta_1: \Delta_2$

Интересно еще сравнить современные заводские трансформаторы с трансформаторами, размеры которых определены по предлагаемой методике. Это сравнение возможно только для трансформаторов с сердечниками из горячекатанной стали и с обмотками из меди, для которых имеются в литературе данные.

Веса активных материалов трансформаторов с сердечниками из горячекатанной стали и с обмотками из меди были определены для $k_{\rm T}=0.5$; B=14500~cc; $\sigma_{\rm c}=1.2\cdot 10^{-11}~\kappa e \tau/\kappa c$; $\beta=3.7$ и приведены в пункте 2 таблицы 3. В пункте 1 приведены веса активных материалов заводских трансформаторов, а в пункте 3 — для трансформаторов с холоднокатанной сталью.

Таблица 3.

	Мощность трансформаторов мгва	31	,5	60		
No.	Веса активных материалов, тонн	Qc	$Q_{\rm M}$	$Q_{\rm c}$	$Q_{\rm M}$	
1 2 3	Для заводских трансформаторов Для трансформаторов с горячекатан- ной сталью Э-42	22,12 18,0 15,5			9,76 7,8 7,5	

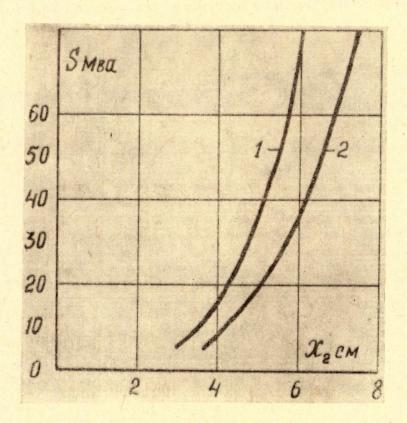


Рис. 6. Кривая 1 для меди и 2 для алюминия.

В заключение заметим, что предлагаемый метод несмотря на сложность, может найти применение для заводского проектирования и общего исследования трансформаторов. Сложность метода окупается его универсальностью и достаточной точностью.

ЛИТЕРАТУРА

- 1. Кутявин И. Д., К определению оптимальных размеров трехфазных двухобмоточных трансформаторов, см. выше.
- 2. Постников И. М., Проектирование электрических машин. Гостехиздат, УССР, 1960.
- З. Тихомиров П. М., Расчет трансформаторов. Госонергоиздат, 1962.