1964

ОБ ОДНОМ ИЗ СПОСОБОВ СНИЖЕНИЯ ЭЛЕКТРОДИНАМИЧЕСКИХ УСИЛИЙ В ОБМОТКАХ **ТРАНСФОРМАТОРОВ**

Доктор техн. наук И. Д. КУТЯВИН, аспирант Г. В. ДЕЛЬ, аспирант В. П. КРАСНОВ.

Конструирование мощных силовых трансформаторов встречает трудности вследствие появления в обмотках больших электродинамических усилий при трехфазном коротком замыкании за трансформатором. В связи с этим возникает необходимость изыскания способов снижения электродинамических усилий в обмотках трансформаторов. Одним из таких способов, частично рассмотренным в данной статье, является применение многослойных непрерывных катушечных или винтовых обмоток.

На рис. 1 показано расположение обмоток одной фазы в окне сердечника двухобмоточного трансформатора без устройства для регулирования напряжения. Обмотка низшего напряжения (НН) состоит из двух слоев, охватывающих обмотку высшего напряжения (ВН). Транспозиция обмотки НН выполнена в переходе из одного слоя в другой, поэтому обе обмотки фазы представляют собой однородную конструкцию на всей высоте стержня, за исключением крайних катушек.

Пользуясь методикой, приведенной в [1] и [2] и рис. 1, найдем соотношения для основных конструктивных размеров трансформатора.

Ширина окна сердечника трансформатора

$$a = 2(x_1 + 2x_2 + l_r)$$
 (1)

где
$$l_{\rm r} = 0.5 \, \delta_{11} + 2 \, \delta_{12} + \delta_{02}$$

Высота окна
$$H = h + 2l_{u}$$
 (2)

Длина среднего витка обмоток фазы

$$l_{\rm M} = \pi \left(d + x_1 + 2 x_2 + l_{\rm r} \right) \tag{3}$$

где $l_z = 2(\delta_{12} + \delta_{02})$.

Воспользуемся уравнением теплового баланса катушки [2] для определения плотностей тока обмоток фазы:

$$\Delta_{1} = \sqrt{\frac{2 \sigma_{1} k_{y_{1}} (k_{\pi 1} x_{1} + y_{1})}{\rho_{1} k_{1} x_{1} y_{1}}} = \alpha_{1} \sqrt{\frac{z_{1}}{x_{1} y_{1}}}$$

$$\Delta_{2} = \sqrt{\frac{2 \sigma_{2} k_{y_{2}} (k_{\pi 2} x_{2} + y_{2})}{\rho_{2} k_{2} x_{2} y_{2}}} = \alpha_{2} \sqrt{\frac{z_{2}}{x_{2} y_{2}}}$$

$$(4)$$

где
$$\alpha_1 = \sqrt{\frac{2 \sigma_1 \ k_{\mathrm{y}1}}{\rho_1 \ k_1}}$$
 ; $\alpha_2 = \sqrt{\frac{2 \sigma_2 \ k_{\mathrm{y}2}}{\rho_2 \ k_2}}$

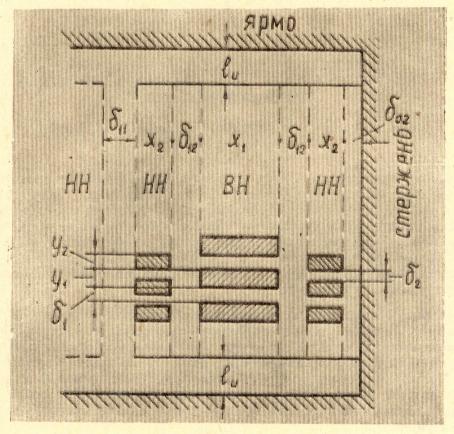


Рис. 1.

Площади сечений обмоток фазы

$$q_{M1} = \frac{k_1 x_1 y_1}{y_1 + \delta_1} h; \quad q_{M2} = \frac{k_2 x_2 y_2}{y_2 \delta_2} h.$$
 (5)

Условие равенства намагничивающих сил обмоток фазы

$$q_{\text{M1}} \Delta_1 = q_{\text{M2}} \Delta_2 . \tag{6}$$

Пусть $\Delta_2 = b \Delta_1$.

Тогда $q_{M1} = b \ q_{M2}$. (7)

Подставив в (7) значения $q_{\text{м1}}$ и $q_{\text{м2}}$ из (5), найдем:

$$y_1 = \frac{2 k b \delta_1 x_2 y_2}{x_1 (y_2 + \delta_2) - 2 k b x_2 y_2}$$
 (8)

где $k = \frac{k_2}{k_1}$

Найдем еще значения x_1 , подставив в (7) выражения (4) для плотностей тока:

$$x_{1} = \frac{\alpha \pm \sqrt{\alpha^{2} - 2 k b \delta_{1} k_{n1} x_{2} y_{2} (y_{2} + \delta_{2})}}{k_{n1} (y_{2} + \delta_{2})}; \qquad (9)$$

где: $\alpha = k b \left(k_{\rm n1} \ x_2 \ y_2 + \delta_1 \ z_2 \ \frac{k_{\rm y\, 2} \ \sigma_2 \ \rho_2}{k \ b^2 \ k_{\rm y\, 1} \sigma_1 \ \rho_1} \right)$.

Воспользовавшись выражением для номинальной мощности трансформатора [1], найдем высоту обмоток фазы:

$$h = \frac{N(y_2 + \delta_2)}{d^2 \sqrt{x_2 y_2 z_2}} ; (10)$$

тде: $N=rac{2 S}{K k_{
m c} k_2 \alpha_2 \pi}$.

Из выражения для реактивной составляющей напряжения короткого замыкания трансформатора можно найти формулу для определения диаметра стержня [1]:

$$d = \frac{U + U^2 + 4PUV(y_2 + \delta_2)}{2P(y_2 + \delta_2)}$$
 (11)

где:
$$U = \sqrt{x_2 y_2 z_2} (0.5 x_1 + x_2 + 3 \delta_{12});$$

$$V = x_1 + 2 x_2 + l_z;$$

$$P = \frac{3.33 B k_c U_p}{16 k_r k_2 a_2};$$

Выражение расчетных затрат для трансформатора с обмотками из разного материала [1]:

После подстановки переменных и некоторых преобразований расчетные затраты (12) можно привести к следующему виду:

$$3 = \frac{k_c \pi \gamma}{4} (A_1 + D B^2) \cdot 10^{-3} \varphi (x_2, y_2)$$
 (13)

мгде:
$$\varphi(x_2, y_2) = 3 N(y_2 + \delta_2) \left[\frac{1}{\sqrt{x_2 y_2 z_2}} + \frac{8 k_2 P\left(\frac{n}{z_2} + \frac{m}{x_2 y_2}\right)}{k_c \gamma_c (0,5 x_1 + x_2 + 3 \delta_{12})} \right] +$$

$$+d^{2} \{k_{\pi} [8(x_{1}+2x_{2}+l_{r})+5,6d]+6l_{H}\};$$
 (14)

$$n = \frac{A_2 (\beta_{M1} \gamma_M + b \beta_{M2} \gamma_M)}{A_1 + D B^2} ; \qquad (15)$$

$$m = \frac{(b \gamma_{M1} E_{M1} + \gamma_{M2} E_{M2}) \alpha^{2}_{2}}{b (A_{1} + DB^{2})}.$$
 (16)

Численное исследование функции (14) произведено для подстанционных двухобмоточных трансформаторов 110 κs мощностью от 60 до 240 κs с сердечниками из холоднокатанной стали, с первичной обмоткой ВН из алюминия и вторичной НН — из меди. Исходные данные приняты те же, что и в [2]. Исследование показало, что минимум (14) имеет место при $y_2 \approx 1.5$ см при x_2 , зависящем от мощности трансформатора. Зависимость критических значений x_2 от мощности трансформатора указана на рис. 2.

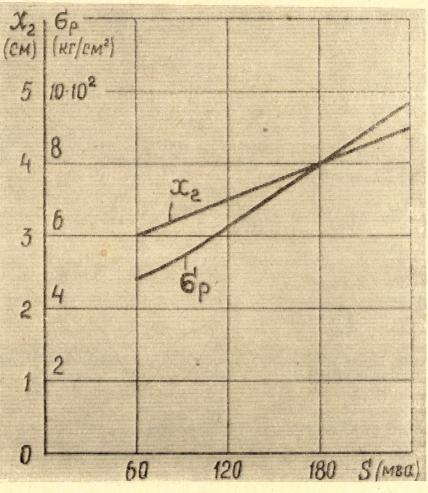


Рис. 2.

На рис. 2 приведена также зависимость напряжения в материале внешнего слоя обмотки НН (σ_p), вызываемого радиальными усилиями при коротком замыкании за трансформатором, от его мощности (S). Для вычисления σ_p использовано выражение (27) из [2],

приведенное к виду
$$\sigma_p = 2.27 \frac{(k_{\text{d}2} x_2 + y_2) (d + 2 x_1 + 2 x_2 + 18)}{y_2 + \delta_2}$$
 (17)

Отношение напряжения в материале наружного слоя к напряжению внутреннего обмотки HH

$$\sigma_{ph}$$
: $\sigma_{ph} = (d+2x_1+2x_2+18)$: $(d+2x_2+8)$.

Из рис. 2 видно, что для принятого взаимного расположения обмоток НН и ВН напряжения в материале внешнего слоя обмотки НН для трансформатора 60 мва составляет 480 кг/см², а для трансформатора 240 *мва* — 960 *кг/см*², то есть значительно меньше, чем для трансформаторов с однослойными обмотками [2].

Для рассматриваемого расположения обмоток только обмотка НН испытывает значительное механическое напряжение и должна быть выполнена из меди. Обмотка ВН работает на сжатие и может быть выполнена из алюминия. Это может снизить затраты меди на производство мощных трансформаторов.

			Таблица 1.		
Мощность трансформатора, мва	60	90	120	180	240
1. y ₂ принято, cм 2. x ₂ из фиг. 2, cм 3. ∆ ₂ из (14), a/cм ² 4. ∆ ₁ при ε=2,5; a/cм ² 5. y ₁ из (8), см 6. x ₁ из (9), см 7. d из (11), см 8. h из (10), см 9. H=h + 2 l ₁₁ см	1 3 418 167 3,5 12,8 65,2 179 197	1 3,2 416 166 3,7 13.5 71 214 232	1 3,5 412 165 3,8 14.7 78 216 234	1 4 405 162 3,7 17 91 216 234	1 4,5 400 160 3,7 19 104 214 232
10. a из (1), c м 11. $Q_{\rm c} = \gamma_{\rm c} \ q_{\rm c} \ l_{\rm c}$, тонн	66,7	69,5 34,4	73 43,7	79 62,8	86 88
12. $Q_{\rm M}=3\gamma_a\ q_2\ l_{\rm M}$, тонн	3,9	5,3	6,4	8,2	10,5
13. $Q_a = 3 \gamma_a q_1 l_M$, тонн	2,95	4,0	4,85	6,27	7,9
14. _{бр} из (17), кг/см ²	480	540	620	780	960

Заметим здесь, что у трансформаторов с однослойными обмотками внутренняя обмотка (лежащая на стержне) испытывает сжатие и, видимо, может рассчитываться на изгиб как многоопорная арочная балка. Роль опор будут играть рейки. Следовательно, эта обмотка всегда будет иметь запас по прочности и поэтому может выполняться из алюминия.

В заключение в таблице приведены основные размеры мощных подстанционных трансформаторов с двухслойной медной обмоткой НН, и однослойной обмоткой ВН из алюминия. Исходные данные заимствованы из [2].

Расчетное значение y_2 принято равным 1 c_M с превышением расчетных затрат над минимальными не более 1%. Вес обмотки НН, выполненной из меди, обозначен через $Q_{\rm M}$ и указан в пункте 12, а вес обмотки ВН, выполненной из алюминия $Q_{\rm a}$ указан в пункте 13. Напряжение в материале внешнего слоя обмотки НН указано в пункте 14.

Как видно из этой таблицы, три четверти обмоток трансформатора любой мощности можно выполнять из алюминия, если было бы возможно одну из обмоток делать двухслойной.

ЛИТЕРАТУРА

- 1. Кутявин И. Д., К определению оптимальных размеров трехфазных двухобмоточных трансформаторов. В этом же сборнике.
- 2. Дель Г. В., Краснов В. П., Кутявин И. Д., К технико-экономическому определению оптимальных размеров подстанционных трехфазных двухобмоточных трансформаторов большой мощности. В этом же сборнике.