ОБЩИЕ СПОСОБЫ РЕШЕНИЯ ОСНОВНЫХ РАСЧЕТНЫХ ЗАДАЧ НА ЗЕМНОМ СФЕРОИДЕ

Б. Ф. КРУТОЙ

(Представлена маркшейдерско-геодезической секцией Юбилейной конференции ТПИ в феврале 1961 г.)

Главной целью настоящей статьи является изложение общих, преимущественно новых способов решения в геодезических координатах основных расчетных задач на земном сфероиде: вычисление положений точек, кратчайших расстояний, направлений по кратчайшему пути, прямых лучевых засечек, площадей координатных трапеций и некоторых других задач.

Дел. 1. Постановка вопроса

1. Введем прежде всего новые, уточненные наименования для некоторых понятий, возникающих при изучении поверхностей.

Назовем поверхностной нитью непрерывное одномерное мно-

жество точек поверхности.

Среди поверхностных нитей выделим в силу их особых качеств те нити Γ , в каждой точке которых главная нормаль совпадает с нормалью к поверхности. Такие нити Γ принято называть геодези ческими, так как они широко применяются при решении различных задач геодезии. Однако подобное наименование этих нитей является чисто случайным, ибо оно не отражает ряда их замечательных внутренних свойств:

а) Если дуга $\Delta \Gamma_{ij}$ геодезической нити Γ_{ij} на поверхности S, проведенная между некоторыми двумя точками i, j этой поверхности, не содержит вершин нити O_{ij} , то эта дуга $\Delta \Gamma_{ij}$ является кратчайшей на по-

верхности S между указанными точками i, j;

б) Если на гладкой поверхности S один конец i гибкой вещественной нити закрепить, а другой конец пропустить через малое колечко во второй точке j поверхности S, то под действием натяжения, приложенного к ее свободному концу, гибкая вещественная нить между указанными точками i, j поверхности S расположится по геодезической кривой и в то же время будет наиболее выравненной нитью между этими точками;

в) Если в каждой точке геодезической нити Γ_{ij} на поверхности S провести касательную плоскость к поверхности S и затем построить огибающую поверхность $\mathcal I$ для этих плоскостей, то геодезическая нить Γ_{ij} поверхности S будет геодезической и для поверхности $\mathcal I$. Поэтому при развертывании поверхности $\mathcal I$ на плоскость геодезическая нить поверхности $S(\mathcal I)$ перейдет в геодезическую нить плоскости, $\mathcal I$. е. пре-

вратится в прямую.

Приведенные соображения говорят достаточно убедительно о том, что поверхностные нити с совпадающими главной и поверхностной нормалями более обосновано будет называть не геодезическими, а выравненными нитями поверхности. Такого наименования для поверхностных нитей подобного рода мы и будем придерживаться в дальнейшем.

2.~ Заметим также, что геодезические координаты B,~L~ поверхностных точек земного сфероида являются частным случаем поверхностных координат и, v, в качестве которых здесь взяты две угловые величины: широта В и долгота L. В указанной отсчетной опоре положения поверхностных точек і земного сфероида определяются пересечением двух семейств координатных нитей: меридианов $L = L_i$ и параллелей $B=B_i$. Легко установить, что нити первого семейства $L=L_i$ являются выравненными на сфероиде, а нити второго семейства $B=B_i$ не будут выравненными, причем всякие две нити $L = L_i$ и $B = B_i$ этих семейств пересекаются под прямым углом. Поэтому геодезическая отсчетная опора B, L на сфероиде может быть отнесена к разряду прямоугольных полувыравненных отсчетных опор.

Отметим еще, что две пары координатных нитей $L = L_i$, $L = L_h$ и $B = B_i$, $B = B_k$ сфероида, взятых парами из каждого семейства, образуют при своем пересечении сфероидическую координатную трапецию ihkj с четырьмя прямыми углами. Определение площади S_i^{hk} такой координатной трапеции входит в число основных расчетных за-

дач на сфероиде.

3. Введем теперь для поверхности земного сфероида ряд обозначений:

 B_i, L_i — геодезическая широта и долгота точки i земного сфероида; A_{ij} — геодезический азимут в точке i выравненной нити Γ_{ii} , про-

веденной на сфероиде через точку i и соседнюю точку j; s_{ij} — длина дуги $\Delta \Gamma_{ij}$ выравненной нити Γ_{ij} между точками i, j

сфероида;

 ΔL_{ij} — разность долгот L_i , L_j точек i, j сфероида; x_{ij} — длина дуги ΔX_{ij} меридиана X_{ij} между точками i, j сфероида с широтами B_i , B_j ;

 Π_{ij} — длина дуги $\Delta\Pi_{ij}$ параллели Π_{ij} между точками i, j сфероида

с широтами B_i , B_j и разностью долгот ΔL_{ij} ;

 $S_{ii}^{n\kappa}$ — площадь сфероидической трапеции, ограниченной двумя меридианами X_{ih} , $X_{i\kappa}$ с разностью долгот $\Delta L_{ij} = \Delta L_{h\kappa}$ и двумя парал-

лелями Π_{ij} , $\Pi_{h\kappa}$ с широтами $B_i = B_j$, $B_h = B_{\kappa}$.

Приведенные здесь обозначения и связанные с ними понятия требуют некоторых уточнений и дополнений, которые вызваны в основном тем, что выравненные кривые Γ_{ij} сфероида не являются вообще замкнутыми и касаются своими последовательными вершинами двух граничных параллелей: северной $\Pi^{(ij)}$ и южной $\overline{\Pi}^{(ij)}$, равноудаленных от плоскости экватора. На этих уточнениях и дополнениях мы сейчас и остановимся.

a) Так как между двумя точками *i*, *j* сфероида можно провести две выравненные дуги: кратчайшую $\Delta \Gamma_{ij}$ и более длинную $\Delta \Gamma_{ij}$, то расстояние по дуге $\Delta\Gamma_{ij}$ обозначим через s_{ij} , а по дуге $\Delta\Gamma_{ij}$ — через s_{ij} , причем s_{ij} и s_{ij} будем считать положительными. В соответствии с этим геодезические азимуты в точке i дуг $\Delta \Gamma_{ij}$, $\Delta \Gamma_{ij}$ обозначим через A_i и \mathring{A}_{ij} ; как правило, $A_{ij} \neq \mathring{A}_{ij} \pm 180^{\circ}$, что будет установлено ниже Дел. 7].

б) Геодезические широты точек i сфероида отсчитываем в обе стороны от плоскости экватора, от 0 до $\pm \frac{\pi}{2}$. Для северной половины сфероида широты точек i обозначим через B_i и примем положительными; для южной половины широты точек i обозначим через B_i и примем отрицательными. Таким образом, широты B_i , B_i изменяются в следующих пределах:

1)
$$0 \leqslant B_i \leqslant +\frac{\pi}{2}$$
; 2) $0 \geqslant \bar{B}_i \geqslant -\frac{\pi}{2}$.

в) Геодезические долготы точек і сфероида отсчитываем двояко: к востоку и к западу от Гринича, от 0 до $\pm 2\pi$, и обозначим соответственно через L_i и L_i , полагая при этом, что $L_i > 0$, а $L_i < 0$. Отсюда будем иметь для точки і две разности долгот:

1)
$$\Delta L_{ij} = L_j - L_i$$
, 2) $\Delta \mathring{L}_{ij} = \mathring{L}_j - \mathring{L}_i = \mathring{L}_{ij}$.

Такой двойной способ счета долгот и их разностей удобен при решении прямых засечек на сфероиде, а также в некоторых других случаях.

- г) Северные и южные вершины выравненной кривой Γ_{ij} , т. е. точки на этой кривой с наименьшим абсолютным значением широты, обозначим: к востоку от начала i—через $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, к западу от начала—через $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, где s=1,2,... есть порядок удаленности вершины данного вида относительно начальной точки і. Соответственно этому широту северных вершин $O_{ij}^{(s)},~ \mathring{O}_{ij}^{(s)}$ обозначим через $B_0^{(ij)},~$ а широту южных вершин $\overline{O}_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$ — через $\overline{B}_{\overline{0}}^{(lj)}$, причем очевидно $B_0^{(lj)} = -\overline{B}_{\overline{0}}^{(lj')}$. Долготы L точек $O_{ij}^{(s)}$ и $\overline{O}_{ij}^{(s)}$ будем обозначать $L_0^{(lj.s)}$ и $\overline{L}_{\overline{0}}^{(ij.s)}$, долготы $\overset{\circ}{L}$ точек $\overset{\circ}{O}{}^{(s)}_{ij}$, $\overset{\circ}{\overline{O}}{}^{(s)}_{ij}$ обозначим через $\overset{\circ}{L}^{(ij.s)}_0$, $\overset{\circ}{\overline{L}}{}^{(ij.s)}_0$
- д) Точки пересечения выравненной кривой Γ_{ij} с экватором обозначим: к востоку от начала i — через $\mathcal{G}_{ij}^{(s)}$, а к западу от i — через $\mathcal{G}_{ij}^{(s)}$, где s=1,2,... есть порядок удаленности точки пересечения относительно начальной точки i. Соответственно этому долготы L восточных точек $\partial_{ij}^{(s)}$ обозначим через $L_{\mathfrak{s}}^{(ij,s)}$, а долготы \mathring{L} западных точек $\hat{eta}_{ij}^{(s)}$ — через $\hat{L}_{\mathfrak{I}}^{\circ}$. Постоянный же азимут выравненной кривой Γ_{ij} в точках $\partial_{ij}^{(s)}$, $\partial_{ij}^{(s)}$ обозначим через $A_{\mathfrak{s}}^{(ij)}$.
- e) Иногда для точек i, j северной и южной частей сфероида мы будем вводить особые обозначения: точки северной части обозначим через i, j, точки южной части—через i, j. Эти и все приведенные выше обозначения различных точек на выравненной кривой Γ_{ij} показаны на рис. 1.

Используя указанные выше обозначения, запишем теперь кратко условия шести расчетных задач, которые можно считать основными для поверхности земного сфероида:

1. Прямая задача для дуги $\Delta \Gamma_{ij}$ выравненной нити Γ_{ij} .

Даны B_1 , L_1 , $A_{1,2}$, $s_{1,2}$; найти B_2 , L_2 , $s_{1,2}$. 2. Обратная задачадля дуги $\Delta \Gamma_{ij}$ выравненной нити Γ_{ij} . Даны B_1, L_1 и B_2 , L_2 ; найти $A_{1.2}$, $A_{2.1}$ и $S_{1.2}$.

3. Прямая выравненнолучевая засечка $(i=1,2;\,j=3)$. Даны B_1 , L_1 , $A_{1.3}$ и B_2 , L_2 , $A_{2.3}$; найти B_3 , L_3 , а также $A_{3.1}$, $s_{1.3}$ и $A_{3.2}$, $s_{2.3}$.

4. Прямая задача для дуги $\Delta\Pi_{ij}$ параллели Π_{ij} (i=1,j=2). Даны $B_1=B_2$ и $\Delta L_{1.2}$; найти $\Pi_{1.2}$.

б) Геодезические широты точек i сфероида отсчитываем в обе стороны от плоскости экватора, от 0 до $\pm \frac{\pi}{2}$. Для северной половины сфероида широты точек i обозначим через B_i и примем положительными; для южной половины широты точек i обозначим через B_i и примем отрицательными. Таким образом, широты B_i , B_i изменяются в следующих пределах:

1)
$$0 \leqslant B_i \leqslant +\frac{\pi}{2}$$
; 2) $0 \geqslant \bar{B}_i \geqslant -\frac{\pi}{2}$.

в) Геодезические долготы точек і сфероида отсчитываем двояко: к востоку и к западу от Гринича, от 0 до $\pm 2\pi$, и обозначим соответственно через L_i и L_i , полагая при этом, что $L_i > 0$, а $L_i < 0$. Отсюда будем иметь для точки і две разности долгот:

1)
$$\Delta L_{ij} = L_j - L_i$$
, 2) $\Delta \mathring{L}_{ij} = \mathring{L}_j - \mathring{L}_i = \mathring{L}_{ij}$.

Такой двойной способ счета долгот и их разностей удобен при решении прямых засечек на сфероиде, а также в некоторых других случаях.

- г) Северные и южные вершины выравненной кривой Γ_{ij} , т. е. точки на этой кривой с наименьшим абсолютным значением широты, обозначим: к востоку от начала i—через $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, к западу от начала—через $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, где s=1,2,... есть порядок удаленности вершины данного вида относительно начальной точки і. Соответственно этому широту северных вершин $O_{ij}^{(s)},~ \mathring{O}_{ij}^{(s)}$ обозначим через $B_0^{(ij)},~$ а широту южных вершин $\overline{O}_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$ — через $\overline{B}_{\overline{0}}^{(lj)}$, причем очевидно $B_0^{(lj)} = -\overline{B}_{\overline{0}}^{(lj')}$. Долготы L точек $O_{ij}^{(s)}$ и $\overline{O}_{ij}^{(s)}$ будем обозначать $L_0^{(lj.s)}$ и $\overline{L}_{\overline{0}}^{(ij.s)}$, долготы $\overset{\circ}{L}$ точек $\overset{\circ}{O}{}^{(s)}_{ij}$, $\overset{\circ}{\overline{O}}{}^{(s)}_{ij}$ обозначим через $\overset{\circ}{L}^{(ij.s)}_0$, $\overset{\circ}{\overline{L}}{}^{(ij.s)}_0$
- д) Точки пересечения выравненной кривой Γ_{ij} с экватором обозначим: к востоку от начала i — через $\mathcal{G}_{ij}^{(s)}$, а к западу от i — через $\mathcal{G}_{ij}^{(s)}$, где s=1,2,... есть порядок удаленности точки пересечения относительно начальной точки i. Соответственно этому долготы L восточных точек $\partial_{ij}^{(s)}$ обозначим через $L_{\mathfrak{s}}^{(ij,s)}$, а долготы \mathring{L} западных точек $\hat{eta}_{ij}^{(s)}$ — через $\hat{L}_{\mathfrak{I}}^{\circ}$. Постоянный же азимут выравненной кривой Γ_{ij} в точках $\partial_{ij}^{(s)}$, $\partial_{ij}^{(s)}$ обозначим через $A_{\mathfrak{s}}^{(ij)}$.
- e) Иногда для точек i, j северной и южной частей сфероида мы будем вводить особые обозначения: точки северной части обозначим через i, j, точки южной части—через i, j. Эти и все приведенные выше обозначения различных точек на выравненной кривой Γ_{ij} показаны на рис. 1.

Используя указанные выше обозначения, запишем теперь кратко условия шести расчетных задач, которые можно считать основными для поверхности земного сфероида:

1. Прямая задача для дуги $\Delta \Gamma_{ij}$ выравненной нити Γ_{ij} .

Даны B_1 , L_1 , $A_{1,2}$, $s_{1,2}$; найти B_2 , L_2 , $s_{1,2}$. 2. Обратная задачадля дуги $\Delta \Gamma_{ij}$ выравненной нити Γ_{ij} . Даны B_1, L_1 и B_2 , L_2 ; найти $A_{1.2}$, $A_{2.1}$ и $S_{1.2}$.

3. Прямая выравненнолучевая засечка $(i=1,2;\,j=3)$. Даны B_1 , L_1 , $A_{1.3}$ и B_2 , L_2 , $A_{2.3}$; найти B_3 , L_3 , а также $A_{3.1}$, $s_{1.3}$ и $A_{3.2}$, $s_{2.3}$.

4. Прямая задача для дуги $\Delta\Pi_{ij}$ параллели Π_{ij} (i=1,j=2). Даны $B_1=B_2$ и $\Delta L_{1.2}$; найти $\Pi_{1.2}$.

а) конечное

$$S_{ij}^{h\kappa} = b^{2} \cdot \Delta L_{ij} \int_{B_{i}}^{B_{h}} \frac{\cos B \, dB}{(1 - e^{2} \sin^{2} B)^{2}} =$$

$$= \frac{b^{2}}{2} \cdot \Delta L_{ij} \left[\frac{\sin B}{1 - e^{2} \sin^{2} B} + \frac{1}{2e} \ln \frac{1 + e \sin B}{1 - e \sin B} \right]_{B_{i}}^{B_{h}}.$$
(3)

б) в виде сходящегося ряда

$$S_{ij}^{h\kappa} = b^2 \cdot \Delta L_{ij} \int_{B_i}^{B_h} \sum_{\lambda=0}^{n} \left(-\frac{2}{\lambda}\right) (-e^2 \sin^2 B)^{\lambda} \cos B dB =$$

$$= b^2 \cdot \Delta L_{ij} \sum_{\lambda=0}^{n} (-1)^{\lambda} \frac{\begin{pmatrix} -2 \\ \lambda \end{pmatrix}}{\lambda+1} e^{2\lambda} \sin^{2\lambda+1} B \bigg|_{B_t}, \tag{4}$$

где a и b — большая и малая полуоси земного сфероида, а

1)
$$e^2 = \frac{a^2 - b^2}{a^2}$$
, 2) $\binom{m}{\lambda} = \frac{m(m-1)...[m-(\lambda-1)]}{1.2...,\lambda}$, $\binom{m}{0} = \binom{m}{m} = 1$. (5)

Отсюда видно, что основное внимание должно быть уделено первым трем задачам (1)—(3), над усовершенствованием и обобщением решения которых трудится немало геодезистов во всех странах.

Дел. 3. Получение общих выражений, лежащих в основе решения первых трех задач

1. Для решения первых двух задач (1), (2) было предложено более десятка частных способов, пригодных для расстояний $s_{1.2}$ не более $1000-3000~\kappa M$, и один общий способ, принадлежащий Бесселю [1], — для любых расстояний $s_{1.2}$. Что касается третьей задачи (3), то пока не было найдено достаточно простых и одновременно совершенно общих способов ее решения.

Учитывая сказанное, мной открыт и разработан еще один общий способ решения первых двух задач (1), (2), в котором вопрос о возможных соотношениях между исходными и определяемыми величинами рассмотрен с предельной полнотой. На основе выведенных при решении этих задач рабочих выражений найдены два независимых способа решения последней задачи—прямой сфероидической засечки. Сущность предлагаемых способов рассматривается ниже, причем вначале мы получим свод исходных замкнутых выражений, из которого выведем затем соответствующие рабочие выражения для решения упомянутых трех основных задач (1)—(3).

2. В основу новых способов положен свод трех обыкновенных дифференциальных уравнений первого порядка с переменными коэффициентами, который определяет выравненную нить Γ земного сфероида, проведенную через точку C(B, L) под азимутом A:

$$\begin{cases}
M dB + 0 \cdot dL - \cos A ds + 0 \cdot dA = 0, \\
0 \cdot dB + r dL - \sin A ds + 0 \cdot dA = 0, \\
0 \cdot dB + \sin A dL + 0 \cdot ds - 1 \cdot dA = 0.
\end{cases}$$
(6)

Кроме того, используется вытекающее из этого свода известное уравнение Клеро

 $r\sin A = h = r_0 = \text{пост.} \tag{7}$

Здесь M и r суть радиусы кривизны меридиана и параллели в переменной точке C заданной выравненной нити Γ сфероида, выходящей из C под азимутом A; постоянная h есть, очевидно, радиус параллели r_0 в вершине O выравненной кривой Γ , т. е. в точке, где азимут $A = A_0 = 90^\circ$ или 270° .

3. Используя указанную совокупность равенств (6), (7), найдем сначала значения ds, dL и dA в функции широты B. Имеем прежде

1)
$$\sin A = \frac{h}{r}$$
; 2) $\cos A = \frac{\cos A}{|\cos A|} \frac{\sqrt{r^2 - h^2}}{r}$;
3) $\beta = \frac{\cos A}{|\cos A|} = \frac{dB}{|dB|} = \pm 1$;
4) $\beta ds = Mr \frac{dB}{\sqrt{r^2 - h^2}}$; 5) $\beta dL = h \frac{M}{r} \frac{dB}{\sqrt{r^2 - h^2}}$;
6) $dA = h \frac{M}{r} \frac{\sin B dB}{\sqrt{r^2 - h^2}}$.

Множитель $\beta = \pm 1$ введен здесь потому, что ds принимаем всегда $\gg 0$, $\sqrt{r^2 - h^2}$ считаем здесь $\gg 0$, и, следовательно, при этих условиях имеем:

Таблица 1

$0 \leqslant A < \frac{\pi}{2}$	sin A≥0	$\cos A \geqslant 0$	$dB\geqslant 0$	$dL\geqslant 0$	$dA\geqslant 0$
$\frac{\pi}{2} \leqslant A < \pi$	$\sin A \geqslant 0$	$\cos A \leqslant 0$	$dB \leqslant 0$	$dL \geqslant 0$	$dA \geqslant 0$
$\pi \leqslant A < \frac{3}{2}\pi$	sin A≤0	cos <i>A</i> ≤0	$dB \leqslant 0$	$dL \leq 0$	$dA \leqslant 0$
$\frac{3}{2}\pi \leqslant A < 2\pi$	$\sin A \leqslant 0$	$\cos A \geqslant 0$	$dB\geqslant 0$	$dL \leqslant 0$	$dA \leq 0$

Учитывая теперь, что

1)
$$M = \frac{a(1-e^2)}{W^3} = \frac{a(1-e^2)}{(1-e^2\sin^2 B)^{3/2}};$$
 3) $e^2 = \frac{a^2-b^2}{a^2};$
2) $r = \frac{a\cos B}{W} = \frac{a\cos B}{(1-e^2\sin^2 B)^{1/2}};$ 4) $e'^2 = \frac{a^2-b^2}{b^2},$ (9)

подсчитаем отдельно величины

$$Mr, \frac{M}{r}, \sqrt{r^2-h^2},$$

входящие в (8). Мы получим после простых преобразований

1)
$$Mr = a (1 - e^2) \frac{\cos B}{W^4};$$
 2) $\frac{M}{r} = \frac{1 - e^2}{W^2 \cos B};$ (10)
3) $\sqrt{r^2 - h^2} = \frac{a}{W} \sqrt{\cos^2 B - \frac{h^2}{a^2} W^2}.$

В (10.3) введем обозначение:

$$\frac{r^2}{a^2}\sin^2 A = \frac{h^2}{a^2} = \sin^2 A_9 = v^2 \leqslant 1,$$
 (11)

где $A_{\mathfrak{p}}$ есть, очевидно, азимут выравненной кривой Γ в точке \mathfrak{I} ее пересечения с экватором. Тогда вместо (10.3) получим:

$$V r^2 - h^2 = \frac{a V 1 - v^2}{W} \sqrt{1 - \frac{1 - e^2 v^2}{1 - v^2} \sin^2 B}.$$

Если затем введем новое обозначение

$$\frac{1 - e^2 v^2}{1 - v^2} = \tau^2 \geqslant 1, \tag{12}$$

то для $\sqrt{r^2 - h^2}$ будем иметь окончательно:

$$V \overline{r^2 - h^2} = \frac{a V \overline{1 - v^2}}{W} \sqrt{1 - \tau^2 \sin^2 B}. \tag{13}$$

Вставим теперь найденные для Mr, $\frac{M}{r}$ и $\sqrt{r^2 - h^2}$ выражения (10.1), (10.2) и (13) в исходные равенства (8). Тогда с учетом обозначений (11), (12) получим:

$$\begin{cases} 1), \beta ds = \frac{a(1-e^2)}{\sqrt{1-v^2}} \cdot \frac{\cos B dB}{(1-e^2\sin^2 B)^{3/2} \sqrt{1-\tau^2\sin^2 B}}. \\ 2), \beta dL = \frac{v(1-e^2)}{\sqrt{1-v^2}} \cdot \frac{dB}{\cos B \sqrt{(1-e^2\sin^2 B)(1-\tau^2\sin^2 B)}}, \\ 3), dA = \frac{v(1-e^2)}{1-v^2} \cdot \frac{\operatorname{tg} B dB}{\sqrt{(1-e^2\sin^2 B)(1-\tau^2\sin^2 B)}}. \end{cases}$$
(14)

Равенства (14) являются искомым развернутым представлением дифференциалов ds, dL и dA в функции широты B текущей точки C на выравненной нити Γ сфероида. Входящие в эти равенства величины ν^2 и τ^2 определяются согласно (7), (11) и (12).

4. Выразим еще ds и dL в функции азимута A выравненной нити Γ в той же текущей точке C сфероида. Из (6.1) и (6.2) прежде всего найдем:

1)
$$ds = \frac{rdL}{\sin A} = a\frac{r}{a}\sin A - \frac{dL}{\sin^2 A} = a \times \csc^2 A dL;$$

2) $dL = \frac{dA}{\sin B}$. (15)

Но из того же равенства (11) получим более развернуто:

$$y^2 = \frac{r^2}{a^2} \sin^2 A = \frac{\sin^2 A \cos^2 B}{\sqrt{1 - e^2 \sin^2 B}},$$

$$\sin B = \sqrt{\frac{\sin^2 A - v^2}{\sin^2 A - e^2 v^2}}.$$
 (16)

Таким образом, окончательно

$$\begin{cases} 1) \ ds = a \vee \sqrt{\frac{\sin^2 A - e^2 \vee^2}{\sin^2 A - \nu^2}} \operatorname{cosec}^2 A \, dA, \\ 2) \ dL = \sqrt{\frac{\sin^2 A - e^2 \vee^2}{\sin^2 A - \nu^2}} \, dA. \end{cases}$$
(17)

Равенства (17) являются искомыми.

5. Равенства (14), выражающие ds, dL и dA в функции широты B, имеют сложный вид и потому перед интегрированием должны быть упрощены путем введения новых переменных.

Упростим сначала равенства (14.1) и (14.2) для ds и dL. Введя

вместо широты B новое переменное φ с помощью подстановки

$$\tau \sin B = \sin \varphi, \tag{18}$$

получим отсюда, имея в виду строение равенств (14.1) и (14.2):

1)
$$\cos B \, dB = \frac{1}{\tau} \cos \varphi \, d\varphi;$$
 4) $\frac{dB}{\cos B} = \frac{\cos \varphi \, d\varphi}{\tau^2 \cos^2 B};$

2)
$$\sqrt{1-\tau^2\sin^2 B} = \sqrt{1-\sin^2 \varphi} = \cos \varphi$$
; 5) $\cos^2 B = 1-\sin^2 B = (19)$

3)
$$1 - e^2 \sin^2 B = 1 - \frac{e^2}{\tau^2} \sin^2 \varphi$$
. $= 1 - \frac{1}{\tau^2} \sin^2 \varphi$.

Вставляя теперь выражения (19) в равенства (14.1), (14.2) и учитывая (12), найдем:

1)
$$\beta ds = \frac{a(1-e^2)}{\sqrt{1-e^2 v^2}}. \frac{d\varphi}{\left(1-\frac{e^2}{\tau^2}\sin^2\varphi\right)^{3/2}};$$
 (20)

2)
$$\beta dL = \frac{v(1-e^2)}{\sqrt{1-e^2v^2}} \cdot \frac{d\varphi}{\left(1-\frac{1}{\tau^2}\sin^2\varphi\right)\sqrt{1-\frac{e^2}{\tau^2}\sin^2\varphi}}$$
.

Введем в (20) обозначения:

1)
$$\frac{1-e^2}{\sqrt{1-e^2 v^2}} = \mu$$
; 2) $\frac{e^2}{\tau^2} = \kappa^2 \leqslant e^2$; 3) $\frac{1}{\tau^2} = m^2 \leqslant 1$. (21)

Тогда вместо (20) получим следующие окончательные выражения для ds и dL в функции нового переменного φ , определяемого соотношением (18):

$$\begin{cases} 1) \ \beta \, ds = a \rho \frac{d\varphi}{(1 - \kappa^2 \sin^2 \varphi)^{3/2}}; \\ 2) \ \beta \, dL = \nu \rho \frac{d\varphi}{(1 - m^2 \sin^2 \varphi) \sqrt{1 - \kappa^2 \sin^2 \varphi}}. \end{cases}$$
 (22)

6. Упростим теперь найденное выше выражение (14.3) дифференциала dA через широту B. С этой целью введем подстановку

$$\sec^2 B = y. (23)$$

Тогда после простых преобразований равенства (14.3) получим следующее окончательное выражение дифференциала dA в зависимости от нового переменного y:

$$dA = \frac{\sqrt{1 - e^2}}{2\sqrt{1 - v^2}} \cdot \frac{dy}{\sqrt{\lambda_1 y^2 + 2\lambda_2 y + \lambda_3}},$$
 (24)

где введены обозначения:

1)
$$\lambda_1 = (1 - e^2) (1 - \tau^2) = -\frac{v^2 (1 - v^2)^2}{1 - v^2} \le 0,$$

2) $2\lambda_2 = (1 - e^2) \tau^2 + (1 - \tau^2) e^2 = \frac{(1 - e^2) (1 - 2e^2 v^2)}{1 - v^2},$ (25)
3) $\lambda_3 = e^2 \tau^2 = \frac{e^2 (1 - e^2 v^2)}{1 - v^2}.$

7). Найдя окончательные выражения (14.1), (14.2) для ds и dL, а также получив выражение (24) с учетом (23), (25) для dA, перейдем от них, наконец, к соответствующим интегральным соотношениям. Такой же интегральный переход произведем с равенствами (17) для ds и dL. Осуществляя тогда попутное решение простого алгебраического интеграла, вытекающего из равенства (24), и используя также уравнение Клеро (7), получим следующую совокупность замкнутых выражений для дуги $\Delta\Gamma_{1.2}$ выравненной нити $\Gamma_{1.2}$ земного сфероида:

1)
$$\beta \cdot s_{1.2} = av \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1 - \kappa^2 \sin^2 \varphi)^{3/2}};$$

2) $s_{1.2} = av \int_{A_{1.2}}^{A_{2.1}'} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} \operatorname{cosec} A dA$
3) $\beta \cdot \Delta L_{1.2} = v\mu \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1 - m^2 \sin^2 \varphi) \sqrt{1 - \kappa^2 \sin^2 \varphi}};$
4) $\Delta L_{1.2} = \int_{A_{1.2}}^{A_{2.1}'} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA$
5) $2 \cdot \Delta A_{1.2} = \arcsin \left[2 v^2 (1 - v^2) \sec^2 B - (1 - 2e^2 v^2) \right] \Big|_{B_1}^{B_2};$
5a) $2 \cdot \Delta A_{1.2} = \arcsin \left(1 - 2 \sin^2 A_{1.2} \right) - \arcsin \left(1 - 2g^2 \sin^2 A_{1.2} \right);$
6) $\cot A_{1.2} = \frac{V_2 \cos B_1 - V_1 \cos B_2 \cos \Delta A_{1.2}}{V_2 \cos B_1 \sin \Delta A_{1.2}} = \frac{g - \cos \Delta A_{1.2}}{\sin \Delta A_{1.2}};$

7)
$$-\operatorname{ctg} A_{2.1}' = \frac{V_1 \cos B_2 - V_2 \cos B_1 \cos \Delta A_{1.2}}{V_1 \cos B_2 \sin \Delta A_{1.2}} = \frac{(1:g) - \cos \Delta A_{1.2}}{\sin \Delta A_{1.2}};$$

8) $\sin A_{1.2} = \frac{a_{\gamma}}{r_1} = \sqrt{1 - e^2} \frac{v_1 V_1}{\cos B_1};$

9) $\sin A_{2.1}' = \frac{a_{\gamma}}{r_2} = \sqrt{1 - e^2} \frac{v_2 V_2}{\cos B_2};$

10) $L_2 = L_1 + \Delta L_{1.2};$ 11) $A_{2.1} = A_{2.1}' \pm 180^\circ = (A_{1.2} + \Delta A_{1.2}) \pm 180^\circ.$

В равенствах (26) введены обозначения:

1)
$$V = \sqrt{1 + e'^2 \cos^2 B};$$
 6) $m^2 = 1 : \tau^2 = m_{1.2}^2;$
2) $v = \frac{r_1}{a} \sin A_{1.2} =$ 7) $\sin \varphi = \tau \sin B;$
 $= \sqrt{1 + e'^2} \frac{\cos B_1 \sin A_{1.2}}{V_1} = v_{1.2};$ 8) $g = \frac{V_2 \cos B_1}{V_1 \cos B_2};$ 4) $\tau^2 = \frac{1 - e^2}{1 - v^2} = \tau_{1.2}^2;$ 9) $e^2 = \frac{a^2 - b^2}{a^2};$ 5) $\kappa^2 = e^2 : \tau^2 = \kappa_{1.2}^2;$ 10) $e'^2 = \frac{a^2 - b^2}{b^2};$ 11) $\beta = \frac{\cos A_{1.2}}{|\cos A_{1.2}|} = \frac{B_2 - B_1}{|B_2 - B_1|} = \frac{\varphi_2 - \varphi_1}{|\varphi_2 - \varphi_1|} = \beta_{1.2} = \pm 1.$

a и b — большая и малая полуоси земного сфероида.

Свод (26) обладает двумя примечательными особенностями:

а) равенство (26.1) имеет тот же вид, что и известное выражение для длины $x_{1.2}$ дуги меридиана $\Delta X_{1.2}$:

$$\beta x_{1.2} = a (1 - e^2) \int_{B_1}^{B_2} \frac{dB}{(1 - e^2 \sin^2 B)^{3/2}}.$$
 (28)

Легко видеть, что (28) получится из (26.1), если в (27.2) — (27.7) внести азимут $A_{1.2}$ выравненной дуги $\Delta X_{1.2}$, равный 0;

б) величины $s_{1,2}$ и $\Delta L_{1,2}$ выражены не только через широту B в текущей точке C дуги $\Delta \Gamma_{1,2}$ выравненной нити $\Gamma_{1,2}$ сфероида, но и в зависимости от азимута A дуги $\Delta \Gamma_{1,2}$ в той же текущей точке C. Это дает возможность осуществить поверку искомых величин несколькими путями.

8. Свод (26) является единой основой для предложенных мной новых общих способов решения первых трех расчетных задач (1)—(3) на земном сфероиде. Не имея возможности по недостатку места дать подробное решение входящих в этот свод эллиптических интегра-

лов (26.1) — (26.4), я ограничусь в дальнейшем лишь применением в указанных выше задачах (1) — (3) соответствующих рабочих выражений для интегралов (26.1) — (26.4). Здесь же только очень кратконамечу пути получения этих рабочих выражений.

Интегралы (26.1) и (26.3) являются частными случаями приведен-

ного по Лежандру эллиптического интеграла 3 рода $\Pi(\varphi, \kappa, n)$:

$$\Pi(\varphi, \kappa, n) = \int_{0}^{\varphi} \frac{d\varphi}{(1 + n\sin^2\varphi)\sqrt{1 - \kappa^2\sin^2\varphi}} (n \ge 0, \ 0 \le \kappa^2 \le 1), \tag{29}$$

решение которого согласно [2] может быть представлено в следующем конечном виде через эллиптические функции Якоби и тэта-функции:

$$\Pi\left(\varphi,\kappa,n\right) = \int_{0}^{u} \frac{du}{1+n \operatorname{sn}^{2} u} = u + \frac{\operatorname{sn}\beta}{\operatorname{cn}\beta\operatorname{dn}\beta} \left[\frac{\vartheta_{4}'\left(\beta\right)}{\vartheta_{4}\left(\beta\right)} + \frac{1}{2} \operatorname{ln} \frac{\vartheta_{4}\left(u-\beta\right)}{\vartheta_{4}\left(u+\beta\right)} \right],$$
 где (30)

1)
$$u = \int_{0}^{\varphi} \frac{d\varphi}{\sqrt{1 - \kappa^2 \operatorname{sn}^2 \varphi}} = F(\varphi, \kappa); \quad 2) \operatorname{sn}^2 \beta = -n : \kappa^2.$$
 (31)

Однако применение выражений (30) и (31) к решению интегралов (26.1) и (26.3) при очень малом значении κ^2 ($\kappa^2 \leqslant e^2 = 0.0066934$ для сфероида Красовского) оказывается крайне невыгодным:

а) требуется предварительный подсчет некоторых вспомогательных

величин;

б) для интеграла (26.1) равенство (30) приобретает неопределенный вид $\frac{0}{0}$, раскрытие которого еще более осложняет это равенство;

в) для интеграла (26.3) решение его согласно (30) будет неточным, так как при— $n=m^2\gg\kappa^2$ значение $\operatorname{sn}\beta$ определится из (31) весьма ненадежно ($\operatorname{sn}\beta$ становится в этом случае очень большим по модулю).

Учитывая сказанное, а также малость κ^2 для земного сфероида, целесообразнее будет интеграл (26.1) найти разложением в ряд по

степенам к2

По тем же соображениям интеграл (26.3), после разложения в ряд по степеням κ^2 , решим по способу, предложенному в 1935 году проф.

В. П. Ветчинкиным в [3].

Что касается остальных двух интегралов (26.2) и (26.4), то они являются эллиптическими интегралами общего вида, и их преобразование к выражению, содержащему только приведенные по Лежандру эллиптические интегралы 1-3 рода $F(\varphi,\kappa)$, $E(\varphi,\kappa)$ и $\Pi(\varphi,\kappa,n)$, потребует большой затраты вычислительного труда. Поэтому интегралы (26.2), (26.4) получим разложением числителя ($\sin^2 A - e^2 v^2$) в ряд по степеням малой величины $e^{\varphi_y^2}$, или же найдем численным интегрированием по Гауссу.

Наконец, отметим то важное обстоятельство, что при заданном e^2 интегралы (26.1) и (26.3) содержат только два параметра: интеграл (26.1) — параметры φ и κ^2 , интеграл (26.3) — параметры φ и m^2 . Поэтому указанные интегралы могут быть представлены в виде таблиц с двумя входами, наподобие приведенного эллиптического интеграла 1 рода $F(\varphi,\kappa)$. Наличие таких таблиц существенно облегчает решение задач, в которых используются эти интегралы (см. дальше).

Дел. 4. Решение прямой задачи для выравненной дуги $\Delta \Gamma_{1,2}$ на сфероиде

Приведем лишь с очень краткими пояснениями совокупности расчетных выражений для решения предлагаемым способом прямой задачи (1) при различных условиях относительно значений величин, входящих в эту задачу.

Условие задачи: Даны B_1 , L_1 , $A_{1,2}$, $s_{1,2}$. Найти B_2 , $A_{2,1}$, L_2 .

1. Определение В

1)
$$V_1 = \sqrt{1 + e'^2 \cos^2 B_1}$$
 — из геодезических таблиц;

(2)
$$v = \sqrt{1 + e'^2} \frac{\cos B_1 \sin A_{1.2}}{V_1};$$
 (5) $\kappa^2 = \frac{e^2}{\tau^2} \leqslant e^2;$

3)
$$y = \frac{1 - e^2}{\sqrt{1 - e^2 v^2}};$$
 4) $\tau^2 = \frac{1 - e^2 v^2}{1 - v^2} \gg 1;$ 6) $\sin \varphi_1 = \tau \sin B_1;$

7)
$$C_0 = 1 + \sum_{\lambda=1}^{n} (-1)^{\lambda} \frac{\begin{pmatrix} -3/2 \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} 2\lambda \\ \lambda \end{pmatrix}}{\cdot 2^{2\lambda}} \kappa^{2\lambda} = 1 + \sum_{\lambda=1}^{n} c_{0,2\lambda} \kappa^{2\lambda};$$

8)
$$C_{2u} = \sum_{\lambda=u}^{n} (-1)^{\lambda-u} \frac{\binom{-3/2}{\lambda} \cdot \binom{2\lambda}{\lambda-u}}{2^{2\lambda} \cdot u} \kappa^{2\lambda} = \sum_{\lambda=u}^{n} c_{2u,2\lambda} \kappa^{2\lambda};$$

9) $\frac{C_{2u}}{C_0} = D_{2u}; \quad (u=1,2,\ldots,n);$

10)
$$\varphi_2 - \varphi_1 = \Delta \varphi_{1,2} = \frac{\beta \cdot s_{1,2}}{C_0 a \mu} - \sum_{u=1}^n D_{2u} (\sin 2u \varphi_2 - \sin 2u \varphi_1); \quad \frac{\beta \cdot s_{1,2}}{C_0 a \mu} = Q;$$

11)
$$\varphi_2 = \varphi_1 + \Delta \varphi_{1\cdot 2};$$
 12) $\sin B_2 = \frac{1}{\tau} \sin \varphi_2.$

Расчет $\Delta \varphi_{1,2}$ согласно (10) мы производим из-за незнания φ_2 путем последовательных приближений, а еще быстрее — следующим образом:

a)
$$\varphi_{2}^{(0)} = \varphi_{1} + \frac{\beta s_{1.2}}{C_{0} a \nu};$$
 b) $\Delta \varphi_{1.2}^{(0)} = \frac{\beta s_{1.2}}{C_{0} a \mu} - \sum_{u=1}^{n} D_{2u} (\sin 2u \, \varphi_{2}^{(0)} - \sin 2u \varphi_{1});$
b) $\frac{\partial}{\partial \varphi_{2}} \Delta \varphi_{2}^{(0)} = \varkappa = \sum_{u=1}^{n} 2 u \, D_{2u} \cos 2 u \, \varphi_{2}^{(0)};$ c) $\Delta \varphi_{1.2} = \frac{\Delta \varphi_{1.2}^{(0)}}{1 - \varkappa}.$

Если $\Delta \varphi_{1,2}$ мало, то от $\Delta \varphi_{1,2}$ переходим сначала к $\Delta B_{1,2}$, затем—к B_2 .

11a)
$$\Delta B_{1,2}^{"} = (\operatorname{tg} B_1 \operatorname{ctg} \varphi_1) \, \Delta \varphi_{1,2}^{"} - \frac{\operatorname{tg} B_1}{2 \, \rho} (\Delta \varphi_{1,2}^2 - \Delta B_{1,2}^2)^{"} - \frac{1}{6 \, \rho^2} \left[(\operatorname{tg} B_1 \operatorname{ctg} \varphi_1) \, \Delta \varphi_{1,2}^3 - \Delta B_{1,2}^3 \right]^{"};$$

12a) $B_2 = B_1 + \Delta B_{1,2};$ $\rho = 206264.8.$

При $\Delta \varphi_{1,2}$ малом можно вычислять $\Delta \varphi_{1,2}$ иначе:

$$10a) \ \Delta \varphi_{1,2}^{"} = \beta \rho'' \frac{\mathbf{s}_{1,2} W_1^3}{a \mu} - \frac{3 \kappa^2}{4 W_1^2} \left[\sin 2\varphi_1 + \frac{2}{3} \left(\cos 2\varphi_1 + \frac{5 \kappa^2 \sin^2 \varphi_1}{4 W_1^2} \right) \cdot \frac{\Delta \varphi_{1,2}^{"}}{\rho} \right] \frac{(\Delta \varphi_{1,2}^{"})^2}{\rho} ,$$

где

13) $W_1 = \sqrt{1 - \kappa^2 \sin^2 \varphi_1} = \sqrt{1 - e^2 \sin^2 B_1} = \frac{V_1}{\sqrt{1 + e'^2}}$ — из геодезических таблиц.

2. Определение $A_{2,1}$

1)
$$\sin A_{2.1}' = \sqrt{1 - e^2} \frac{\sqrt{V_2}}{\cos B_2};$$

2)
$$A_{2.1} = A_{2.1} \pm 180^{\circ} = (A_{1.2} + \Delta A_{1.2}) \pm 180^{\circ}$$
.

а) Если $A_{2.1}^{'}$ близко к 90° или 270° , но $B_2-B_1=\Delta B_{1.2}$ велико, то вместо $A_{2,1}$ вычисляют $\Delta A_{1,2}$:

3)
$$g = \frac{V_2 \cos B_1}{V_1 \cos B_2}$$
;

4)
$$2 \cdot \Delta A_{1,2} = \arcsin(1 - 2\sin^2 A_{1,2}) - \arcsin(1 - 2g^2\sin^2 A_{1,2})$$
.

б) Если $B_2 - B_1 = \Delta B_{1,2}$ мало, то вместо $A_{2,1}^{'}$ можно также числить $\Delta A_{1,2}$:

4a)
$$2 \cdot \Delta \ A_{1.2}^{''} =
ho'' rac{arepsilon}{\sin 2A_{1.2}} \left[1 + rac{\cos 2A_{1.2}}{2\sin^2 2A_{1.2}} arepsilon + rac{1 + 2\cos^2 2A_{1.2}}{6\sin^4 2A_{1.2}} arepsilon^2
ight],$$
 где
$$5) \ arepsilon = 2 \left(g^2 - 1 \right) \sin^2 A_{1.2}.$$

3. Поверка вычисления B_2 и $A_{2,1}$

Так как согласно (26.1) и (26.9) обратный азимут $A_{2.1} = A_{2.1} \pm A_{2.1}$ $\pm 180^{\circ} = F(s_{1.2}, \nu, B_2)$, то вычисленные B_2 и $A_{2.1}$ поверяются совместно равенством (26.2) — вторым выражением для $s_{1,2}$:

$$s_{1.2} = a_{\gamma} \int_{\Lambda_{1.2}}^{\Lambda'_{2.1}} \sqrt{\frac{\sin^2 A - e^{2\gamma^2}}{\sin^2 A - v^2}} \csc^2 A \, dA.$$

Подсчитывая этот интеграл тремя различными путями: а) разложением числителя $(\sin^2 A - e^2 v^2)^{1/2}$ в ряд по степеням малой величины $e^2 v^2$,

б) численным интегрированием по Гауссу,

вблизи среднего интеграла значения $\overline{A}_{1,2}=rac{1}{2}\,(A_{1,2}+A_{2,1}^{'})$ в ряд по степеням разности $\Delta A_{1,2}=A_{2,1}^{'}-A_{1,2}$ получим три соответствующих способа поверки B_2 и $A_{2\cdot 1\cdot 1}$

4. Определение L_2

1)
$$\sqrt{1-m^2} = p$$
; 2) $\varphi_{1,2} = \frac{1}{2} (\varphi_1 + \varphi_2)$; 3) $\Delta \varphi_{1,2} = \varphi_2 - \varphi_1$;

4)
$$\lg \varphi = t$$
; 5) $\beta = \frac{\Delta \varphi_{1.2}}{|\Delta \varphi_{1.2}|}$; 6) $\arg \lg (pt) = \vartheta$;
7) $\forall \varphi = \frac{\forall}{|\gamma|} p \sqrt{1 - e^2}$; 8) $\frac{\forall}{|\gamma|} p = \frac{\forall \sqrt{1 - e^2}}{\sqrt{1 - e^2} \sqrt{1 - e^2}}$; 9) $\forall \varphi = \frac{\forall}{|\gamma|} \frac{p}{\sqrt{(1 - e^2) - p^2}}$;
10) $g(\lambda) = (-1)^{\lambda} {\binom{-1/2}{\lambda}} \kappa^{2\lambda}$; 11) $\Phi(\lambda) = \int_{\varphi_1}^{\varphi_2} \frac{\sin^{2\lambda} \varphi \, d\varphi}{1 - m^2 \sin^2 \varphi}$;
12) $F(\lambda) = g(\lambda) \Phi(\lambda)$;

 $(\lambda = 0.1, 2, ..., n).$

Из (10) - (12) найдем последовательно:

13)
$$F(0) = \Phi(0) = \frac{1}{p} \left[\text{arc tg } (pt_2) - \text{arc tg } (pt_1) \right] = p \left[\theta_2 - \theta_1 \right].$$

14)
$$F(\lambda) = E(\lambda) [S(\lambda - 1) - \Phi(\lambda - 1)], (\lambda = 1, 2, ..., n),$$

где обозначено:

15)
$$E(\lambda) = -\frac{g(\lambda)}{m^2} = (-1)^{\lambda+1} \begin{pmatrix} -1/2 \\ \lambda \end{pmatrix} \frac{\kappa^{2\lambda}}{m^2};$$

$$16) \quad S(\lambda-1) = \int_{\varphi_1}^{\varphi_2} \sin^{2(\lambda-1)} \varphi \, d\varphi.$$

Интегрируя (16), получим для функции $S(\lambda-1)$, входящей в (14): 17) $S(0) = \varphi_2 - \varphi_1 = \Delta \varphi_{1,2}, (\lambda=1);$

18)
$$S(\lambda - 1) = S(\omega) = \frac{1}{2^{2\omega}} \left\{ {2\omega \choose \omega} (\varphi_2 - \varphi_1) + (-1)^{\omega} \sum_{\alpha=0}^{\omega-1} (-1)^{\alpha} \frac{{2\omega \choose \omega}}{\omega - \alpha} \times \left[\sin 2 (\lambda - \alpha) \varphi_2 - \sin 2 (\lambda - \alpha) \varphi_1 \right] \right\}, \quad (\lambda - 1 = \omega = 1, 2, ..., n).$$

После определения функций $F(\lambda)$ искомые значения $\Delta L_{1,2}$ и L_2 подсчитаем так:

19)
$$\beta \cdot \Delta L_{1,2} = \nu \mu \sum_{\lambda=0}^{n} F(\lambda) = \sum_{\lambda=0}^{n} \nu \mu F(\lambda) = \sum_{\lambda=0}^{n} R(\lambda); 20) L_{2} = L_{1} + \Delta L_{1,2}.$$

Ниже даются рабочие выражения для первых пяти членов $\psi F(\lambda) = R(\lambda)$ в равенстве (19):

$$\begin{aligned} &20) \quad \text{vp } F\left(0\right) = \frac{\mathsf{v}}{|\mathsf{v}|} \sqrt{1 - e^2} \left[\operatorname{arctg}\left(pt_2\right) - \operatorname{arctg}\left(pt_1\right) \right] = \\ &= \frac{\mathsf{v}}{|\mathsf{v}|} \sqrt{1 - e^2} \left[\vartheta_2 - \vartheta_1 \right] = \frac{\mathsf{v}}{|\mathsf{v}|} \sqrt{1 - e^2} \, \Delta \vartheta_{1,2} = R\left(0\right); \end{aligned}$$

но если $\varphi_2-\varphi_1=\Delta\varphi_{1,2}$ невелико или если одна из величин $\varphi_1,\ \varphi_2$ близ-ка к $\frac{\pi}{2}$, то лучше

20a)
$$\nu \mu F(0) = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \operatorname{arc} \operatorname{tg} \frac{p \sin \Delta \varphi_{1,2}}{\cos \Delta \varphi_{1,2} - m^2 \sin \varphi_1 \sin \varphi_2}$$
.

$$\begin{split} 21) \ \text{VP} \, F \, (1) = & - \frac{e^2}{2} \, \text{VP} \, (\varphi_2 - \varphi_1) + \frac{1}{2} \, e^2 \, R \, (0) = \\ & = \frac{\text{V}}{|\text{V}|} \, \frac{e^2}{2} \, \sqrt{1 - e^2} \, \left[(\vartheta_2 - \vartheta_1) - p \, (\varphi_2 - \varphi_1) \right] = R \, (1); \\ 22) \ \text{VP} \, F \, (2) = & - \frac{3}{16} \, e^2 \, \kappa^2 \, \text{VP} \, \left[\, (\varphi_2 - \varphi_1) - \frac{1}{2} \, (\sin 2\varphi_2 - \sin 2\varphi_1) \, \right] + \\ & + \frac{3}{4} e^2 \, R \, (1) = R \, (2); \\ 23) \ \text{VP} \, F \, (3) = & - \frac{5}{16} \, e^2 \, \kappa^4 \, \text{VP} \, \left[\, \frac{3}{8} \, (\varphi_2 - \varphi_1) - \frac{1}{4} \, (\sin 2\varphi_2 - \sin 2\varphi_1) + \right. \\ & + \frac{1}{32} \, (\sin 4\varphi_2 - \sin 4\varphi_1) \, \right] + \frac{5}{6} \, e^2 \, R \, (2) = R \, (3); \\ 24) \ \text{VP} \, F \, (4) = & - \frac{35}{128} \, e^2 \, \kappa^6 \, \text{VP} \, \left[\, \frac{5}{16} \, (\varphi_2 - \varphi_1) - \frac{15}{64} \, (\sin 2\varphi_2 - \sin 2\varphi_1) + \right. \\ & + \frac{3}{64} \, (\sin 4\varphi_2 - \sin 4\varphi_1) - \frac{1}{192} \, (\sin 6\varphi_2 - \sin 6\varphi_1) \, \right] + \frac{7}{8} \, e^2 \, R \, (3) = R \, (4). \end{split}$$

5. Заключительная поверка

Заключительную поверку найденных B_2 , $A_{1.2}$ и $\Delta L_{1.2}$ производим, используя равенство [Дел. 3; (26.4)]:

$$\Delta L_{1.2} = \int_{A_{1.2}}^{A'_{2.1}} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA.$$

Здесь так же, как и выше в разд. З для $s_{1,2}$, возможны три способа поверки.

Дел. 5. Решение обратной задачи для выравненной дуги $\Delta \Gamma_{1.2}$ на сфероиде

Как и в прямой задаче, здесь будут даны в основном только последовательности рабочих выражений, вытекающие из начального свода [Дел. 3; (26)] и определяющие совокупность искомых величин в обратной задаче; будут также указаны пределы годности этих последовательностей в различных случаях.

Условие задачи: даны B_1 , L_1 и B_2 , L_2 ; найти $A_{1.2}$, $A_{2.1}$ и $s_{1.2}$. 1. Первый способ определения $A_{1.2}$ и $A_{2.1}$ (при $s_{1.2} > 1000$ км) Прежде всего решаем 2 приближениями уравнение [Дел. 4, 4; (19)]

$$R \text{ (0)} = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \left[\text{arc tg } (p \ tg \ \varphi_2) - \text{arc tg } (p \ tg \ \varphi_1) \right] =$$

$$= \frac{\nu}{|\nu|} \sqrt{1 - e^2} \left[\vartheta_2 - \vartheta_1 \right] = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \Delta \vartheta_{1,2};$$

$$R(1) = \frac{e^{2}}{2} R(0) - \frac{e^{2}}{2} \nu \mu (\varphi_{2} - \varphi_{1}) = \frac{e^{2}}{2} R(0) - \frac{e^{2}}{2} \nu \nu \Delta \varphi_{1.2} =$$

$$= \frac{\nu}{|\nu|} \frac{e^{2}}{2} \sqrt{1 - e^{2}} \left[\Delta \theta_{1.2} - p \cdot \Delta \varphi_{1.2} \right];$$

$$R(2) = \frac{3}{4} e^{2} R(1) - \frac{3}{16} e^{2} \kappa^{2} \nu \mu \left[\Delta \varphi_{1.2} - \frac{1}{2} \left(\sin 2\varphi_{2} - \sin 2\varphi_{1} \right) \right];$$

$$R(3) = \frac{5}{6} e^{2} R(2) - \frac{5}{16} e^{2} \kappa^{4} \nu \mu \left[\frac{3}{8} \Delta \varphi_{1.2} - \frac{1}{4} \left(\sin 2\varphi_{2} - \sin 2\varphi_{1} \right) + \frac{1}{32} \left(\sin 4\varphi_{2} - \sin 4\varphi_{1} \right) \right]$$

относительно неизвестного p, причем сумма $\sum_{\lambda=1}^{n} R(\lambda)$ есть малость порядка e^2 .

Начальное достаточно точное значение $A_{1,2}^{(0)}$ азимута $A_{1,2}$, входящего в вычисление p, находим из соотношения

2)
$$\frac{\cos B_2 \operatorname{tg} B_1 - \cos \Delta L_{1.2} \sin B_1}{\sin \Delta L_{1.2}} = \frac{\pi_2 - \pi_1}{\sin \Delta L_{1.2}} = \operatorname{ctg} \alpha_{1.2} = \operatorname{ctg} A_{1.2}^{(0)}.$$

Соответствующее приближенное значение $p^{(0)}$ неизвестного p и начальное значение $R^{(0)}$ для R (0), а также последовательные значения величин ψ , m, τ , κ^2 , φ , входящих в R (λ), определим тогда из соотношений:

3)
$$p = \cos B_0 \approx \sin A_{1.2}^{(0)} \cos B_1 = p^{(0)};$$

4) $R(0) = \frac{v}{|v|} \sqrt{1 - e^2} \Delta \theta_{1.2} \approx \frac{v}{|v|} \sqrt{1 - e^2} \Delta L_{1.2} = R^{(0)}(0);$
5) $v\mu = \frac{v}{|v|} p\sqrt{1 - e^2};$ 6) $\sin B_0 = m;$ 7) $\csc B_0 = \tau;$
8) $\kappa^2 = e^2 (1 - p^2) = e^2 \sin^2 B_0;$ 9) $\sin \varphi = \tau \sin B$

при $A_{1,2}=A_{1,2}^{(0)}$ и $p=p^{(0)},\;p^{(1)},\;p^{(2)},\ldots,\;$ причем B_0 есть широта вершин $O_{1,2}$ выравненной кривой $\Gamma_{1,2}.$

Улучшенное значение $p^{(s)}$ неизвестного p в итоге s-го приближения найдем так:

10)
$$w^{(s-1)} = \beta \sum_{\lambda=0}^{n} R^{(s-1)}(\lambda) - \Delta L_{1,2} = \Delta L_{1,2}^{(s-1)} - \Delta L_{1,2},$$

11) $\frac{\partial w^{(s-1)}}{\partial p} = \sqrt{1 - e^2} \tau^2 \left[\operatorname{tg} \varphi_2 - \operatorname{tg} \varphi_1 \right] = x^{(s-1)};$
12) $p^{(s)} = p^{(s-1)} - \frac{w^{(s-1)}}{x^{(s-1)}} = p^{(s-1)} + \Delta p^{(s-1)}.$

Решив уравнение (1) двумя-тремя приближениями, вычисляем затем окончательные значения азимутов $A_{1.2}$, $A_{2.1}$:

13)
$$\sin A_{1.2} = \frac{v}{|v|} \frac{\cos B_0}{\cos B_1} \sqrt{\frac{1 - e^2 \sin^2 B_1}{1 - e^2 \sin^2 B_0}} = \frac{v}{|v|} \frac{p}{\cos B_1} \frac{V_1}{V_0};$$

14)
$$\sin A_{2,1}' = \frac{v}{|v|} \frac{\cos B_0}{\cos B_2} \sqrt{\frac{1 - e^2 \sin^2 B_2}{1 - e^2 \sin^2 B_0}} = \frac{v}{|v|} \frac{p}{\cos B_2} \frac{V_2}{V_0};$$

15) $A_{2,1} = A_{2,1}' \pm 180^\circ.$

Необходимая в дальнейшем при вычислении расстояния $s_{1.2}$ вспомогательная величина р может быть выражена следующим образом через найденную выше величину $\kappa^2 = e^2 (1 - p^2) = e^2 \sin^2 B_0$:

16)
$$\mu = \sqrt{(1 - e^2)(1 - \kappa^2)} = \sqrt{(1 - e^2)(1 - e^2 \sin^2 B_0)} = \sqrt{1 - e^2} W_0 = (1 - e^2) V_0.$$

Что касается величины ν , то она связана с величинами p и κ соотношением

17)
$$v = \frac{v}{|v|} \frac{p}{\sqrt{1-\kappa^2}} = \frac{v}{|v|} \frac{\cos B_0}{\sqrt{1-e^2 \sin^2 B_0}} = \frac{v}{|v|} \frac{\cos B_0}{|w_0|} = \frac{v}{|v|} \frac{\cos B_0}{\sqrt{1-e^2} V_0}.$$

2. Второй способ определения $A_{1.2}$ и $A_{2.1}$ (при $s_{1.2} \leq 1000$ км)

1)
$$\operatorname{tg} \frac{1}{2} (\alpha'_{2.1} + \alpha_{1.2}) = \frac{\cos \frac{1}{2} (B_2 + B_1)}{\sin \frac{1}{2} (B_2 - B_1)} \operatorname{tg} \frac{\Delta L_{1.2}}{2} = \operatorname{tg} \bar{\alpha}_{1.2};$$

2)
$$\operatorname{tg} \frac{1}{2} (\alpha'_{2.1} - \alpha_{1.2}) = \frac{\sin \frac{1}{2} (B_2 + B_1)}{\cos \frac{1}{2} (B_2 - B_1)} \operatorname{tg} \frac{\Delta L_{1.2}}{2} = \operatorname{tg} \frac{\Delta \alpha_{1.2}}{2}$$
,

отсюда найти $\alpha_{1,2}$ и $\alpha_{2,1}$ в отдельности.

3)
$$Q = \frac{e^2}{\sin \Delta L_{1,2}} (V_1 \sin B_2 - V_2 \sin B_1);$$

4)
$$\alpha_{2.1} = \alpha_{2.1}' \pm 180^{\circ} = (\alpha_{1.2} + \Delta \alpha_{1.2}) \pm 180^{\circ};$$

5)
$$\sin \sigma_{1,2} = \frac{\cos B_2}{\sin \alpha_{1,2}} \sin \Delta L_{1,2} = -\frac{\cos B_1}{\sin \alpha_{2,1}} \sin \Delta L_{1,2};$$

6)
$$\operatorname{ctg} \tilde{A}_{1.2} = \operatorname{ctg} \alpha_{1.2} - Q \frac{\cos B_1}{V_1 \cos B_2};$$

7)
$$\operatorname{ctg} \tilde{A}_{2.1} = \operatorname{ctg} \alpha_{2.1} - Q \frac{\cos B_2}{V_2 \cos B_1}$$
; (cm. [4]).

$$\left\{ \begin{array}{l} 8) \ \ \eta_{1.2}^{''} = \frac{e^2}{6\rho^{''}} \, (\sigma_{1.2}^{''})^2 \sin \widetilde{A}_{1.2} \cos^2 B_1 \left(\cos \widetilde{A}_{1.2} - \frac{\sigma_{1.2}^{''}}{4\rho^{''}} \, \mathrm{tg} \, B_1 \, \right); \\ 9) \ \ \eta_{2.1}^{''} = \frac{e^2}{6\rho^{''}} \, (\sigma_{1.2}^{''})^2 \sin \widetilde{A}_{2.1} \cos^2 B_2 \left(\cos \widetilde{A}_{2.1} - \frac{\sigma_{1.2}^{''}}{4\rho^{''}} \, \mathrm{tg} \, B_2 \, \right) \end{array} \right. \right. \ \left. (\mathrm{CM.} \ [5] \right).$$

10)
$$A_{1.2} = \tilde{A}_{1.2} - \eta_{1.2}''$$
; 11) $A_{2.1} = \tilde{A}_{2.1} - \eta_{2.1}''$.

3. Поверка вычисления $A_{1,2}$ и $A_{2,1}$

Поверка вычисленных азимутов $A_{1,2}$ и $A_{2,1}$ производится их подстановкой в одно из следующих равенств:

1)
$$\frac{\sin A_{1.2}}{\sin A_{2.1}} = \frac{\cos B_2}{\cos B_1} \sqrt{\frac{1 - e^2 \sin^2 B_1}{1 - e^2 \sin^2 B_2}} = \frac{V_2 \cos B_1}{V_1 \cos B_2} = g;$$
2)
$$\Delta L_{1.2} = \int_{A_{1.2}}^{A_{2.1}'} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA.$$

Действительное решение интеграла (2) производим одним из трех способов, примененных выше в заключительной части прямой задачи.

4. Вычисление s_{1.2} четырьмя способами

Расстояние $s_{1,2}$ может быть вычислено четырьмя путями из двойного равенства

$$s_{1.2} = \beta a \nu \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1 - \kappa^2 \sin^2 \varphi)^{s/2}} = a \nu \int_{A_{1.2}}^{A'_{2.1}} \sqrt{\frac{\sin^2 A - e^2 \nu^2}{\sin^2 A - \nu^2}} dA.$$

Из первой части этого двойного равенства имеем

$$\beta s_{1.2} = C_0 a_1 u (\varphi_2 - \varphi_1) + a_1 u \sum_{u=1}^n C_{2u} (\sin 2u \varphi_2 - \sin 2u \varphi_1),$$

где φ_1 , φ_2 и κ^2 найдены выше при определении $p = \cos B_0$, величина р дана в [Дел. 5, 4; (14)], а коэффициенты C_0 , C_{2u} указаны в [Дел. 3, 1; (7), (8)].

Вторую часть того же двойного равенства решаем одним из трех способов, упомянутых выше в прямой задаче.

Дел. 6. Решение прямой выравненнолучевой засечки на сфероиде

Прямой выравненнолучевой засечкой на сфероиде назовем задачу определения геодезических координат B_3 , L_3 точки 3, если даны геодезические координаты B_1 , L_1 и B_2 , L_2 исходных точек 1, 2, а также даны геодезические азимуты $A_{1.3}$, $A_{2.3}$ засекающих точку 3 лучей $\mathcal{J} J_{1.3}$, $\mathcal{J} J_{2.3}$ с вершинами в исходных точках 1, 2.

При этом может быть поставлено дополнительное требование найти также длины $s_{1.3}$, $s_{2.3}$ засекающих сторон 1.3, 2.3 и обратные азимуты $A_{3.1}$, $A_{3.2}$ этих сторон в определяемой точке 3. Из сказанного вытекает следующее краткое:

Условие задачи: Даны B_1 , L_1 , $A_{1.3}$ и B_2 , L_2 , $A_{2.3}$. Найти B_3 , L_3 , а также $A_{3.1}$, $s_{1.3}$ и $A_{3.2}$, $s_{2.3}$.

В указанной постановке данная задача может быть решена двумя общими способами, в основе которых лежит очевидное соотношение

$$\Delta L_{1,2} = \Delta L_{1,3} - \Delta L_{2,3}. \tag{1}$$

Рассмотрим каждый из этих способов в отдельности.

А. Первый способ решения прямой засечки на сфероиде

Этот способ целесообразно применять, когда нам нужны только геодезические координаты B_3 , L_3 определяемой точки 3. Сущность способа заключается в следующем.

Прежде всего из решения прямой засечки на шаре находим приближенные значения $\widetilde{B}_{3}^{(0)}$, $\widetilde{L}_{3}^{(0)}$ геодезических координат B_{3} , L_{3} определяемой точки 3. Для указанного решения, которое выполняется с поверкой, применяются следующие рабочие выражения:

1) tg
$$\Delta \widetilde{L}_{1.3}^{(0)} =$$

$$=\frac{\cos(90^{\circ}-B_{2})\cos\Delta L_{1.2}-\cot A_{2.3}\sin\Delta L_{1.2}-\cot(90^{\circ}-B_{1})\sin(90^{\circ}-B_{2})}{\cot A_{1.3}\frac{\sin(90^{\circ}-B_{2})}{\sin(90^{\circ}-B_{1})}-\cot A_{2.3}\cos\Delta L_{1.2}-\cos(90^{\circ}-B_{2})\sin\Delta L_{1.2}};$$

2)
$$\widetilde{L}_{3}^{(0)} = L_{1} + \Delta \widetilde{L}_{1,3}^{(0)}$$
; 3) $\Delta \widetilde{L}_{2,3}^{(0)} = \widetilde{L}_{3}^{(0)} - L_{2}$;

4)
$$\operatorname{tg} \widetilde{B}_{3}^{(0)} = [\operatorname{ctg} A_{1.3} \sin \Delta \widetilde{L}_{1.3}^{(0)} + \cos (90^{\circ} - B_{1}) \cos \Delta \widetilde{L}_{1.3}^{(0)}] : \sin (90^{\circ} - B_{1}) =$$

=
$$\left[\operatorname{ctg} A_{2.3} \sin \Delta \widetilde{L}_{2.3}^{(0)} + \cos (90^{\circ} - B_2) \cos \Delta \widetilde{L}_{2.3}^{(0)}\right] : \sin (90^{\circ} - B_2).$$

Вычисления производятся с точностью до 0,00001 для чисел

и с точностью до 1'' или до $0' \cdot 0001$ для углов.

Далее вычисляем с окончательной точностью (например, с точностью до 10^{-8}) величины v_{i3} , κ_{i3}^2 , τ_{i3} , p_{i3} , $(v_{i})_{i3}$, φ_i^3 и ϑ_i^3 для обенх засекающих сторон i3 = 1.3, 2.3. Соответствующие расчетные выражения даны в дел. 4 ($\sin \varphi_i^3 = \tau_{i3} \sin B_i$; $\operatorname{tg} \vartheta_i^3 = p_{i3} \operatorname{tg} \varphi_i^3$).

Теперь приступаем к вычислению на сфероиде последовательных приближений $B_3^{(s)}$, $L_3^{(s)}$, (s=1,2,...), для геодезических координат B_3 ,

 L_{3} определяемой точки 3.

Начиная первое приближение, берем в качестве исходного значение $B_3^{(0)} = B_3^{(0)}$ широты точки 3, полученное из решения засечки на шаре. Затем решением обратных задач по сторонам $i3=1.3,\,2.3$ при известных азимутах $A_{1.3},\,A_{2.3}$ лучей $\mathcal{J} J_{1.3},\,\mathcal{J} J_{2.3}$, вычисляем согласно [Дел. 5, 1] соответствующие приближенные значения $\Delta L_{1.3}^{(0)}, \Delta L_{2.3}^{(0)}$ на сфероиде разностей долгот $\Delta L_{1.3}$, $\Delta L_{2.3}$. При этом расчет ведем следующим образом:

1)
$$\widetilde{B}_{3}^{(0)} = B_{3}^{(0)} \approx B_{3}$$
, 2) $\tau_{i3} \sin B_{3} = \sin \varphi_{3}^{i}$, 3) $\varphi_{3}^{i} - \varphi_{i}^{3} = \Delta \varphi_{i3}$, 4) $p_{i3} \operatorname{tg} \varphi_{3}^{i} = \operatorname{tg} \vartheta_{3}^{i}$, 5) $\vartheta_{3}^{i} - \vartheta_{i}^{3} = \Delta \vartheta_{i3}$, 6) $\frac{\mathsf{v}_{i3}}{|\mathsf{v}_{i3}|} = \mathsf{w}_{i3}$, 7) $\mathsf{w}_{i3} \sqrt{1 - e^{2}} \Delta \vartheta_{i3} = R_{i3}(0)$, 8) $(\mathsf{v} \mathsf{p})_{i3} \Delta \varphi_{i3} = \Delta R_{i3}(0)$, 3.1 9) $\frac{e^{2}}{2} [R_{i3}(0) - \Delta R_{i3}(0)] = R_{i3}(1)$, 10) $\frac{1}{4} (\kappa^{2} \mathsf{v} \mathsf{p})_{i3} [\Delta \varphi_{i3} - (\sin 2\varphi_{3}^{i} - \sin 2\varphi_{i}^{3}) = \Delta R_{i3}(1)$, 11) $\frac{3}{4} e^{2} [R_{i3}(1) - \Delta R_{i3}(1)] = R_{i3}(2)$, 12) $\sum_{k=0}^{2} R_{i3}(\lambda) = \beta_{i3} \Delta L_{i3}^{(0)}$.

Эти расчеты производим, удерживая 6-7 знаков после запятой.

Подсчитав $\Delta L_{i3}^{(0)} = \Delta L_{1.3}^{(0)}$, $\Delta L_{2.3}^{(0)}$, вычисляем соответствующие приближенные значения $L_{\frac{1}{3}}^{(0)}$, $L_{\frac{2}{3}}^{(0)}$ долготы L_{3} точки 3 сфероида, а также вычисляем возникающую при этом невязку $w_{L}^{(0)}$ по долготе:

1)
$$L_{\frac{1}{3}}^{(0)} = L_1 + \Delta L_{1.3}^{(0)}$$
, 2) $L_{\frac{2}{3}}^{(0)} = L_2 + \Delta L_{2.3}^{(0)}$, 3) $w_L^{(0)} = L_{\frac{1}{3}}^{(0)} - L_{\frac{2}{3}}^{(0)}$, (4.1)

т. е. производим расчеты, вытекающие из основного соотношения (1): $\Delta L_{1.2} = \Delta L_{1.3} - \Delta L_{2.3}$, если вместо точного значения B_3 широты точки 3 взять приближенное значение $\widetilde{B}_3^{(0)} = B_3^{(0)}$.

ки 3 взять приближенное значение $\widetilde{B}_3^{(0)}=B_3^{(0)}$. Найдя невязку $w_L^{(0)}$, вычисляем соответствующие поправки $\delta B_3^{(0)}$ и $\delta L_{\frac{1}{3}}^{(0)}$, $\delta L_{\frac{3}{3}}^{(0)}$, прибавляя которые к $B_3^{(0)}$, $L_{\frac{1}{3}}^{(0)}$, $L_{\frac{2}{3}}^{(0)}$, получим улучшенные в первом приближении значения $B_3^{(1)}$, $L_3^{(1)}$ широты и долготы точки 3. Выполняется это так:

1)
$$\sin A'_{i3} = \frac{\sqrt{1 - e^2} v_{i3} V_3}{\cos B_3}$$
; 2) $\frac{\partial L_3^i}{\partial B_3} = a_{i3} = \frac{\operatorname{tg} A'_{3i}}{V_3^2 \cos B_3}$;
3) $\delta B_3^{(0)} = -\frac{w_L^{(0)}}{(a_{1.3} - a_{2.3})}$; (5.1)
4) $a_{i3} \delta B_3^{(0)} = \delta L_{\frac{i}{3}}^{(0)}$; 5) $B_3^{(1)} = B_3^{(0)} + \delta B_3^{(0)}$;
6) $L_3^{(1)} = L_{\frac{1}{3}}^{(0)} + \delta L_{\frac{1}{3}}^{(0)} = L_{\frac{2}{3}}^{(0)} + \delta L_{\frac{2}{3}}^{(0)}$.

На этом первое приближение заканчивается.

Переходя ко втором у приближению, в качестве исходного берем значение $B_3^{(1)}$ широты точки 3, полученное в итоге первого приближения. При этом вычисления производим с полным числом знаков и определение $\Delta L_{i3}^{(1)}$ выполняем с учетом поправочного члена R_{i3} (3). Таким образом, во изменение и в дополнение к (3.1) будем иметь для второго приближения:

$$B_{3}^{(1)} \approx B_{3}; \quad 12) \frac{3}{8} (\kappa^{2} \vee \mathfrak{p})_{i3} \left[\frac{3}{8} \Delta \varphi_{i3} - \frac{1}{4} (\sin 2\varphi_{3}^{i} - \sin 2\varphi_{i}^{3}) + \frac{1}{32} (\sin 4\varphi_{3}^{i} - \sin 4\varphi_{i}^{3}) \right] = \Delta R_{i3}(2);$$

$$13) \frac{5}{6} e^{2} \left[R_{i3}(2) - \Delta R_{i3}(2) \right] = R_{i3}(3); \quad 14) \sum_{\lambda=0}^{3} R_{i3}(\lambda) = \beta_{i3} \cdot \Delta L_{i}^{(1)}.$$

$$(2.2)$$

Подсчитав $\Delta L_{i}^{(1)} = \Delta L_{1}^{(1)}$, $\Delta L_{2}^{(1)}$ в соответствии с (2.1) и (2.2), находим согласно (4.1) (с заменой $^{(0)}$ на $^{(1)}$) значения $L_{1}^{(1)}$, $L_{2}^{(1)}$ долготы точки 3 и невязку $w_{L}^{(1)}$, после чего вычисляем согласно (5.1) (с заменой $^{(x)}$ на $^{(x+1)}$) широту $B_{3}^{(2)}$ и долготу $L_{3}^{(2)}$ точки 3 в итоге второго приближения. При этих подсчетах значения $\mathrm{tg}\ A_{3i}^{'}$ и $\frac{\partial L_{3}^{i}}{\partial B_{3}} = a_{i3}$ можно взять из первого приближения.

По окончании второго приближения производим поверочное третье приближение, в котором ограничиваемся вычислением лишь величин R_{i3} (0) и R_{i3} (1) при $B_3 = B_3^{(2)}$. Остальные же члены R_{i3} (2) и R_{i3} (3) берем из второго приближения. Подсчитав затем соответст-

вующие разности долгот $\Delta L_1^{(2)}$, находим невязку $w_L^{(2)}$ третьего приближения. Если расчеты второго и третьего приближений выполнены правильно, то эта невязка $w_L^{(2)} \approx 0$ в пределах точности вычислений. Тогда в качестве окончательных координат B_3 , L_3 определяемой точки 3 принимаем их значения $B_3^{(2)}$, $L_3^{(2)}$, полученные во втором приближении

Найдя координаты B_3 , L_3 точки 3, вычисляем в случае надобности также обратные азимуты A_{3i} и длины s_{i3} , что может быть выполнено согласно [Дел. 5].

Б. Второй способ решения прямой засечки на сфероиде

Применение этого способа целесообразно в том случае, когда кроме геодезических координат B_3 , L_3 определяемой точки 3 нужно знать одновременно расстояния $s_{1.3}$, $s_{2.3}$ и, может быть, также обратные азимуты $A_{3.1}$, $A_{3.2}$. Решение прямой засечки по этому способу

производится в следующем порядке.

Прежде всего по известным координатам B_1 , L_1 и B_2 , L_2 исходных точек 1, 2 и по известным азимутам $A_{1.3}$, $A_{2.3}$ засекающих лучей $\mathcal{J} \mathcal{J}_{1.3}$, $\mathcal{J} \mathcal{J}_{2.3}$ на этих точках решаем на шаре соответствующую прямую засечку, определяя из этого решения сферические расстояния $\sigma_{1.2}$, $\sigma_{1.3}$, $\sigma_{2.3}$ дуг 1°2°, 1°3°, 2°3° и сферические углы γ_1 , γ_2 , γ_3 в вершинах 1°,2°, 3° сферического треугольника 1°2°3°, отображающего данный сфероидический треугольник 123. Эти вычисления выполняются так:

ПОЛНЯЮТСЯ ТАК: 1)
$$90^{\circ} - B_1 = \Theta_1$$
, 2) $90^{\circ} - B_2 = \Theta_2$; 3) $\frac{1}{2}$ ($\Theta_1 + \Theta_2$) $= \Theta_{1.2}$; 4) $\frac{1}{2}$ ($\Theta_2 - \Theta_1$) $= \delta\Theta_{1.2}$; 5) $\frac{1}{2} \Delta L_{1.2} = \delta L_{1.2}$; 6) $\frac{\sin \delta\Theta_{1.2} \cot \delta L_{1.2}}{\sin \Theta_{1.2}} = \tan \delta\alpha_{1.2}$; 7) $\frac{\cos \Theta_{1.2} \cot \delta L_{1.2}}{\cos \Theta_{1.2}} = \tan \alpha_{1.2}$; 8) $\alpha_{1.2} + \delta\alpha_{1.2} = \beta_1$; 9) $\alpha_{1.2} - \delta\alpha_{1.2} = \beta_2$; 10) $\beta_2 + A_{2.3} = \gamma_1$; 11) $\beta_1 - A_{1.3} = \gamma_2$; 12) $\frac{1}{2}$ ($\gamma_1 + \gamma_2$) $= \gamma_{1.2}$; (1) $\frac{1}{3}$ $\frac{1}{2}$ ($\gamma_2 - \gamma_1$) $= \delta\gamma_{1.2}$; 12) $\frac{1}{2}$ ($\gamma_1 + \gamma_2$) $= \gamma_{1.2}$; (1) $\frac{\sin \Theta_1}{\sin \beta_2} \sin \Delta L_{1.2} = \frac{\sin \Theta_2}{\sin \beta_1} \sin \Delta L_{1.2} = \sin \sigma_{1.2}$; 15) $\frac{1}{2} \sigma_{1.2} = \delta\sigma_{1.2}$; 16) $\frac{\sin \delta\gamma_{1.2}}{\sin \gamma_{1.2}} \tan \delta\sigma_{1.2} = \tan \delta\sigma_{0.2}$; 17) $\frac{\cos \delta\gamma_{1.2}}{\cos \gamma_{1.2}} \tan \delta\sigma_{1.2} = \tan \delta\sigma_{0.2}$ $\frac{\sin \gamma_1}{\sin \sigma_{2.3}} \sin \sigma_{1.2} = \sin \gamma_3$; 19) $\sigma_0 - \delta\sigma_0 = \sigma_{2.3}$; 20) $\frac{\sin \gamma_1}{\sin \sigma_{2.3}} \sin \sigma_{1.2} = \frac{\sin \gamma_2}{\sin \sigma_{1.3}} \sin \sigma_{1.2} = \sin \gamma_3$;

Вычисления на шаре производятся с точностью до 0.00001 для чисел и с точностью до 1" или до 0'.0001 для углов.

21) $\gamma_1 + \gamma_2 + \gamma_3 + 180^\circ = \varepsilon$.

Далее мы вычисляем с полной точностью вспомогательные величины $\nu_{i3},~\kappa_{i3}^2,~\boldsymbol{p}_{i3},~C_0^i,~C_{2u}^i,~D_{2u}^i,~Q_{i3},~\varphi_{i3},~\vartheta_{i3},(\nu\mu)_{i3}$ для обеих засекающих сторон i3=1.3,~2.3, необходимые для решения соответствующих

прямых задач согласно [Дел. 4.].

Чтобы начать затем решение указанных прямых задач по стороне 1.3 и по стороне 2.3, нам нужно каким-то образом найти приближенные длины $s_{1.3}^{(0)}$, $s_{2.3}^{(0)}$ этих сторон. Проще всего и, пожалуй, достаточно надежно это можно сделать следующим образом. Исходя из выполненного выше решения прямой засечки на шаре, произведем построение соответствующего сферического треугольника $1^{\circ}2^{\circ}3^{\circ}$ на глобусе или построим равноугольное изображение 1'2'3' этого треугольника на карте. Разбив затем длины засекающих сторон $1^{\circ}3^{\circ}$, $2^{\circ}3^{\circ}$ или 1'3', 2'3' на равное число частей $(e\kappa)_{i3}$, например — на 5, определим для каждой такой части $(e\kappa)_{i3}$ среднюю широту $B_{e\kappa}^{(i3)}$. Для каждой широты $B_{e\kappa}^{(i3)}$ вычислим средний радиус кривизны $R_{e\kappa}^{(i3)}$ и затем подсчитаем их среднее значение $R_{i3}^{(i3)}$ по каждой засекающей стороне i3. Тогда можно принять, что

1)
$$s_{1.3}^{(0)} = \sigma_{1.3} R^{(1.3)}, \quad 2) \quad s_{2.3}^{(0)} = \sigma_{2.3} R^{(2.3)},$$
 (2)

где $\sigma_{1.3}$, $\sigma_{2.3}$ — найденные выше сферические расстояния.

Теперь переходим к последовательным приближениям, в которых вычисляются совместно улучшенные значения расстояний $s_{1.3}$, $s_{2,3}$ и координат B_3 , L_3 определяемой точки 3. В качестве исходных для этих приближений берутся значения $s_{1.3}^{(0)}$, $s_{2.3}^{(0)}$ расстояний s_{i3} , полученные согласно (2). Каждое х-ое приближение распадается при этом на три ступени:

- а) нахождение невязки $w_B^{(\varkappa-1)}$ в двух вычисленных значениях $B_{\frac{1}{3}}^{(\varkappa-1)},\ B_{\frac{2}{3}}^{(\varkappa-1)}$ широты точки 3, которая была вызвана ошибочностью полученных в $(\varkappa-1)$ -ом приближении значений $s_{1.3}^{(\varkappa-1)},\ s_{2.3}^{(\varkappa-1)}$ для расстояний $s_{1.3},\ s_{2.3};$
- б) нахождение невязки $w_L^{(x-1)}$ в двух вычисленных значениях $L_{\frac{1}{3}}^{(x-1)}$, $L_{\frac{2}{3}}^{(x-1)}$ долготы точки 3, которая была вызвана той же причиной, что и в (a);
- в) составление свода двух плоскостных уравнений с поправками $\delta s_{1.3}^{(x-1)}$, $\delta s_{2.3}^{(x-1)}$ приближенных значений $s_{1.3}^{(x-1)}$, $s_{2.3}^{(x-1)}$ для расстояний s_{i3} и решение этого свода; вычисление соответствующих поправок $\delta B_{i3}^{(x-1)}$, $\delta B_{i3}^{(x-1)}$ и $\delta L_{i3}^{(x-1)}$, $\delta L_{i3}^{(x-1)}$; вычисление улучшенных в х-ом приближении значений $s_{1.3}^{(x)}$, $s_{2.3}^{(x)}$ для сторон s_{i3} и улучшенных значений $B_{3}^{(x)}$, $L_{3}^{(x)}$ для координат B_{3} , L_{3} определяемой точки 3.

Рассмотрим более подробно каждое из этих основных действий,

выполняемых в х-ом приближении.

Нахождение невязки $w_B^{(\kappa-1)}$. Взяв в качестве исходных значения $s_{1,3}^{(\kappa-1)}$, $s_{2,3}^{(\kappa-1)}$ расстояний s_{i3} , полученные в предшествующем $(\kappa-1)$ -ом приближении, вычисляем согласно [Дел. 4.1] широту B_3 точки 3 дважды—по стороне 1.3 и по стороне 2.3. При этом мы используем указанный там прием резкого усиления сходимости при вычислении $\Delta \varphi_{i3}^{(\kappa-1)}$. В итоге решения этих двух задач мы получаем два соответствующих значения $B_{\frac{1}{3}}^{(\kappa-1)}$, $B_{\frac{2}{3}}^{(\kappa-1)}$ для широты B_3 точки 3, и тогда

$$w_B^{(x-1)} = B_{\frac{1}{3}}^{(x-1)} - B_{\frac{2}{3}}^{(x-1)}.$$
 (3)

Нахождение невязки $w_L^{(\mathsf{x}-1)}$. Взяв в качестве исходных значения $\varphi_3^{(\mathsf{x}-1)}$, $\varphi_3^{(\mathsf{x}-1)}$ преобразованной широты φ_3 точки 3, которые были получены при вычислении двух значений $B_{\frac{1}{3}}^{(\mathsf{x}-1)}$, $B_{\frac{3}{3}}^{(\mathsf{x}-1)}$ широты B_3 этой точки, мы определяем затем согласно [Дел. 4.4] долготу L_3 точки 3 дважды— но стороне 1.3 и по стороне 2.3. В итоге решения этих двух частных задач мы получаем два значения $L_{\frac{1}{3}}^{(\mathsf{x}-1)}$, $L_{\frac{3}{3}}^{(\mathsf{x}-1)}$ для долготы L_3 точки 3, и тогда:

$$w_L^{(x-1)} = L_{\frac{1}{3}}^{(x-1)} - L_{\frac{2}{3}}^{(x-1)} . \tag{4}$$

Вычисление $s_{i3}^{(x)}$, $B_3^{(x)}$, $L_3^{(x)}$. Найдя невязки $w_B^{(x-1)}$, $w_L^{(x-1)}$, составляем свод двух плоскостных уравнений с искомыми поправками $\delta s_{1.3}^{(x-1)}$, $\delta s_{2.3}^{(x-1)}$ расстояний $s_{1.3}^{(x-1)}$, $s_{2.3}^{(x-1)}$ и свободными членами $w_B^{(x-1)}$, $w_L^{(x-1)}$:

$$\begin{cases}
\frac{\partial B_{3}^{1}}{\partial s_{1,3}} & \delta s_{1,3}^{(\alpha-1)} - \frac{\partial B_{3}^{2}}{\partial s_{2,3}} & \delta s_{2,3}^{(\alpha-1)} + w_{B}^{(\alpha-1)} = 0; \\
\frac{\partial L_{3}^{1}}{\partial s_{1,3}} & \delta s_{1,3}^{(\alpha-1)} - \frac{\partial L_{3}^{2}}{\partial s_{2,3}} & \delta s_{2,3}^{(\alpha-1)} + w_{L}^{(\alpha-1)} = 0.
\end{cases} (5)$$

Входящие сюда коэффициенты вычисляются так:

1)
$$\sin A'_{3i} = \frac{\sqrt{1 - e^2} v_{i3} V_3^i}{\cos B_3^i};$$
 2) $\frac{\partial B_3^i}{\partial s_{i3}} = \frac{\rho''}{M_3} \cos A'_{3i};$ 3) $\frac{\partial L_3^i}{\partial s_{i3}} = \frac{\rho''}{N_3} \sin A'_{3i},$ (6)

где

1)
$$M = \frac{a(1-e^2)}{(1-e^2\sin^2 B)^{3/2}}$$
; 2) $N = \frac{a}{(1-e^2\sin^2 B)^{1/2}}$; 3) $\rho'' = 206264.8$.

Определив из решения свода (5) поправки $\delta s_{i3}^{(\kappa-1)}$, вычисляем соответствующие поправки $\delta B_{i_3}^{(\kappa-1)}$, $\delta L_{i_3}^{(\kappa-1)}$:

1)
$$\delta B_{i_{3}}^{(\alpha-1)} = \frac{\partial B_{3}^{i}}{\partial s_{i3}} \delta s_{i3}^{(\alpha-1)};$$
 2) $\delta L_{i_{3}}^{(\alpha-1)} = \frac{\partial L_{3}^{i}}{\partial s_{i3}} \delta s_{i3}^{(\alpha-1)}$ (8)

Теперь улучшенные в итоге х-го приближения значения $s_{i3}^{(x)}$, $B_3^{(x)}$, $L_3^{(x)}$ расстояний s_{i3} и координат B_3 , L_3 найдутся так:

1)
$$s_{i3}^{(x)} = s_{i3}^{(x-1)} + \delta s_{i3}^{(x-1)};$$

2) $B_3^{(x)} = B_{\frac{1}{3}}^{(x-1)} + \delta B_{\frac{1}{3}}^{(x-1)} = B_{\frac{2}{3}}^{(x-1)} + \delta B_{\frac{2}{3}}^{(x-1)};$
3) $L_3^{(x)} = L_{\frac{1}{3}}^{(x-1)} + \delta L_{\frac{1}{3}}^{(x-1)} = L_{\frac{2}{3}}^{(x-1)} + \delta L_{\frac{2}{3}}^{(x-1)},$ (9)

На этих трех основных действиях х-ое приближение заканчивается. Опыт показывает, что при длинах s_{i3} засекающих сторон до $10000~\kappa m$ достаточно двух приближений; в третьем же приближении путем сокращенного расчета нужно только убедиться, что новые значения $s_{i3}^{(2)}$, $B_3^{(2)}$, $L_3^{(2)}$ расстояний и координат дают невязки $w_B^{(2)} \approx 0$, $w_L^{(2)} \approx 0$ в пределах точности вычислений.

(7)

В случае надобности, после определения s_{i3} , B_3 , L_3 могут быть найдены согласно [Дел. 4.2] также обратные азимуты A_{3i} лучей $\mathcal{J} J_{3i}$ на засекаемой точке 3.

Дел. 7. Некоторые обобщения и дополнения

Рассмотрим некоторые обобщения и дополнения, относящиеся

к решению первых трех задач на земном сфероиде.

Дополнение 1. Прежде всего найдем значение преобразованной широты $\varphi_0 = -\varphi_0$ для северных $O^{(s)}$ и южных $\overline{O}^{(s)}$ вершин выравненной кривой Γ , исходя из введенных в делянке 3 обозначений ν , τ и подстановки

 $\sin \varphi = \tau \sin B$.

Заметив, что в вершинах $O^{(s)}$, $\bar{O}^{(s)}$ выравненной кривой Γ соответствующий азимут $A_0 = A_{\overline{0}} \pm \pi = \frac{\pi}{2}$, найдем:

1)
$$v^2 = \frac{r^2}{a^2} \sin^2 A = \frac{r_0^2}{a^2} \sin^2 A_0 = \frac{\cos^2 B_0}{1 - e^2 \sin^2 B_0};$$

2) $1 - e^2 v^2 = \frac{1 - e^2}{1 - e^2 \sin^2 B_0};$

3)
$$1 - v^2 = \frac{(1 - e^2)\sin^2 B_0}{1 - e^2\sin^2 B_0}$$
; 4) $\tau^2 = \frac{1 - e^2 v^2}{1 - v^2} = \csc^2 B_0$; 5) $\sin \varphi_0 = 1$.

Отсюда следует, что независимо от значения геодезической широты $B_0 = -\overline{B}_{\overline{0}}$ для вершин $O^{(s)}, \overline{O}^{(s)}$ выравненной кривой Γ получим всегда

$$\varphi_0 = -\frac{\pi}{\varphi_0} = \frac{\pi}{2} \,. \tag{1}$$

Сбобщенные разложения. Используем равенство (1) для получения некоторых соотношений, имеющих более общий вид, чем в делянках 4-6.

Дело в том, что разложения, которые мы применяли при решении прямой и обратной задач для дуги $\Delta\Gamma_{1.2}$ выравненной кривой $\Gamma_{1.2}$ на земном сфероиде, а также для решения прямой сфероидической засечки, были получены из замкнутых выражений (26) делянки 3

в предположении, что вершины $O_{ij}^{(s)},\,\overline{O}_{ij}^{(s)},\,\overline{O}_{ij}^{(s)},\,\overline{O}_{ij}^{(s)}$ выравненной кривой Γ_{ij} расположены вне соответствующей дуги $\Delta\Gamma_{ij}$. В том же случае, когда на выравненной дуге $\Delta\Gamma_{ij}$ между концевыми ее точками i,j

лежит одна из вершин $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$ или даже несколько таких вершин (рис. 1), то предшествующие разложения для решения указанных выше задач должны быть надлежащим образом обобщены.

Для получения соответствующих обобщений будем исходить из ранее найденных разложений для вычисления расстояния s_{ij} и разности долгот ΔL_{ij} между концевыми точками i, j выравненной дуги $\Delta \Gamma_{ij}$. Но только теперь мы разобьем всю дугу $\Delta \Gamma_{ij}$ на ряд частных дуг $\Delta \Gamma_{\mathbf{z},\mathbf{z}+1}$, выбрав при этом в качестве промежуточных наиболее подходящие точки $\mathbf{z},\mathbf{z}+1$, что будет сделано несколько позже. В таком случае разложения, приведенные в делянках 4,5 и используемые также в делянке 6, при решении прямой сфероидической засечки, могут быть представлены в следующем обобщенном виде:

$$\begin{array}{c} \textbf{8)} \;\; R_{ij}\left(2\right) = \frac{3}{4}\,e^2\,R_{ij}\left(1\right) - \frac{3}{16}\,e^2\,(k^2\,\nu\rho)_{ij}\,\sum_{\mathrm{x}=i}^{\mathrm{x}+1=j} \!\!\left[\,\beta_{\,\mathrm{x},\mathrm{x}+1}\left(\phi_{\mathrm{x}+1}-\phi_{\mathrm{x}}\right) - \right. \\ \\ \left. - \frac{1}{2}\,\beta_{\mathrm{x},\mathrm{x}+1}\left(\sin2\phi_{\mathrm{x}+1}-\sin2\phi_{\mathrm{x}}\right)\,\right], \end{array}$$

и т. д. (см. Дел. 4.4). Здесь

$$\beta_{\mathsf{x},\mathsf{x}+1} = \frac{\cos A_{\mathsf{x},\mathsf{x}+1}}{|\cos A_{\mathsf{x},\mathsf{x}+1}|} = \frac{\varphi_{\mathsf{x}+1} - \varphi_{\mathsf{x}}}{|\varphi_{\mathsf{x}+1} - \varphi_{\mathsf{x}}|} = \pm 1.$$

Допустим теперь, что в разложениях (2) точки \varkappa , $\varkappa+1$ располагаются в зависимости от границ изменения азимута A_{ij} в одной из следующих последовательностей (см. Дел. 1.3 и рис. 1):

$$a)$$
 $\alpha=i,~O_{ij}^{(1)},~\partial_{ij}^{(1)},~ar{O}_{ij}^{(1)},~\partial_{ij}^{(2)},...,$ $\alpha+1=j$ при $0\leqslant A_{ij}<rac{\pi}{2}$ (рис. $1,a$);

$$\delta$$
) $\mathbf{z} = i, \; \mathcal{J}_{ij}^{(1)}, \; \overline{O}_{ij}^{(1)}, \; \mathcal{J}_{ij}^{(2)}, \ldots, \; \mathbf{z} + 1 = j$ при $\frac{\pi}{2} \leqslant A_{ij} < \pi$ (рис. 1, δ); (3)

в)
$$\varkappa = i, \ \mathring{\mathcal{G}}_{ij}^{(1)}, \overline{\mathring{O}}_{ij}^{(2)}, \dots, \ \varkappa + 1 = j$$
 при $\pi \leqslant A_{ij} < \frac{3}{2} \pi$ (рис. $1, \theta$);

г) х
$$=i,\ \mathring{O}_{ij}^{(1)},\ \mathring{S}_{ij}^{(1)},\ \mathring{\overline{O}}_{ij}^{(1)},\ \mathring{\overline{O}}_{ij}^{(2)},\ \mathring{S}_{ij}^{(2)}.\dots,\$$
х $+1=j$ при $\frac{3}{2}$ $\pi \leqslant A_{ij} < 2\pi$ (рис. 1,г).

Тогда не трудно прежде всего подсчитать, что при таком расположении точек $\varkappa, \varkappa + 1$ будем иметь всегда:

1)
$$\sum_{x=i}^{x+1=j} \beta_{x,x+1} \left(\sin 2u \varphi_{x+1} - \sin 2u \varphi_{x} \right) = \beta'_{ji} \sin 2u \varphi_{j} - \beta_{ij} \sin 2u \varphi_{i},$$
 где
$$2) \beta_{ij} = \frac{\cos A_{ij}}{|\cos A_{ij}|}, \quad 3) \quad \beta'_{ji} = \frac{\cos A'_{ji}}{|\cos A'_{ji}|}, \quad 4) \quad A'_{ji} = A_{ji} \pm 180^{\circ}.$$

Сказанное вытекает из того, что если \varkappa , $\varkappa+1=\partial_{ij}^{(s)},\,\dot{\partial}_{ij}^{(s)},\,$ то $\varphi_{\varkappa}==\varphi_{\varkappa+1}=0;$ если же \varkappa , $\varkappa+1=O_{ij}^{(s)},\,\dot{O}_{ij}^{(s)},\,\bar{O}_{ij}^{(s)},\,\bar{O}_{ij}^{(s)},\,\dot{O}_{ij}^{(s)},\,$ то $\varphi_{\varkappa},\,$ $\varphi_{\varkappa+1}=\pm\,\frac{\pi}{2}$.

Значит, во всех этих случаях

$$\sin 2u\varphi_{x+1} - \sin 2u\varphi_x = 0, \ (x \neq i, \ x+1 \neq j).$$

Что касается сумм

1)
$$\sum_{x=i}^{x+1=j} \beta_{x,x+1} (\varphi_{x+1} - \varphi_x) = \Delta \varphi_{ij}, \qquad 2) \sum_{x=i}^{x+1=j} \beta_{x,x+1} (\vartheta_{x+1} - \vartheta_x) = \Delta \vartheta_{ij}, \qquad (5)$$

то на основании (1) и смысла множителя $\beta_{x,x+1}$ имеем всегда:

1)
$$\Delta \varphi_{ij} = q\pi + (\beta'_{ji} \varphi_j - \beta_{ij} \varphi_i);$$
 2) $\Delta \vartheta_{ij} = q\pi + (\beta'_{ji} \vartheta_j - \beta_{ij} \vartheta_i),$ (6)

где q есть число вершин $O_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$ или $\mathring{O}_{ij}^{(s)}$, $\overline{O}_{ij}^{(s)}$, содержащихся между концевыми точками i,j дуги $\Delta \Gamma_{ij}$, причем в (6) преобразованные широты φ_i , φ_j и дуги ϑ_i , ϑ_j берутся с их знаками \pm . Таким образом, например, для дуг $\Delta \Gamma_{ij}$, изображенных на рис. 1a, 1b, имеем:

Phg. 1,a: 1)
$$\Delta \varphi_{ij} = 3\pi - (\varphi_j + \varphi_i)$$
, 2) $\Delta \vartheta_{ij} = 3\pi - (\vartheta_j + \vartheta_i)$, $(\varphi_i, \vartheta_i > 0, \varphi_j, \ \vartheta_j < 0)$;

Phg. 1,6: 1) $\Delta \varphi_{ij} = 2\pi - (\overline{\varphi}_j - \varphi_i)$, 2) $\Delta \vartheta_{ij} = 2\pi - (\overline{\vartheta}_j - \vartheta_i)$, $(\varphi_i, \ \vartheta_i > 0, \ \overline{\varphi}_j, \ \overline{\vartheta}_j < 0)$.

Равенства (4) — (6) являются обобщением соответствующих частных равенств в делянке 4, которые там были записаны без множителя $\beta_{ij} = \beta'_{ji}$, перенесенного в левую часть. Вставляя равенства (4)—(6) в разложения общего вида (2), получим следующие окончательные выражения для этих разложений при любой длине s_{ij} выравненной дуги $\Delta \Gamma_{ij}$:

1)
$$\frac{s_{ij}}{a} = \mu_{ij} C_0^{(ij)} \Delta \varphi_{ij} + \mu_{ij} \sum_{u=1}^n C_{2u}^{(ij)} (\beta'_{ji} \sin 2u \varphi_j - \beta_{ij} \sin 2u \varphi_i);$$

2)
$$\Delta \varphi_{ij} = \frac{s_{ij}}{a \mu_{ij} C_0^{(ij)}} - \sum_{u=1}^n D_{2u}^{(ij)} (\beta'_{ji} \sin 2u \varphi_j - \beta_{ij} \sin 2u \varphi_i);$$

3) $\Delta L_{ij} = \sum_{i=1}^n R_{ij}(\lambda),$ (2a)

где

a)
$$R_{ij}(0) = \frac{v_{ij}}{|v_{ij}|} \sqrt{1 - e^2} \Delta \theta_{ij};$$
 δ) $R_{ij}(1) = \frac{e^2}{2} R_{ij}(0) - \frac{e^2}{2} (v\mu)_{ij} \Delta \varphi_{ij};$

8)
$$R_{ij}(2) = \frac{3}{4} e^2 R_{ij}(1) - \frac{3}{16} e^2 (k^2 \vee \mu)_{ij} \left[\Delta \varphi_{ij} - \frac{1}{2} (\beta'_{ji} \sin 2\varphi_j - \beta_{ij} \sin 2\varphi_i) \right];$$

2) $R_{ij}(3) = \frac{5}{6} e^2 R_{ij}(2) - \frac{5}{16} e^2 (k^4 \vee \mu)_{ij} \left[\frac{3}{8} \Delta \varphi_{ij} - \frac{1}{8} (\beta'_{ij} + \beta'_{ij}) \right];$

$$-\frac{1}{4}(\beta'_{ji}\sin 2\varphi_j - \beta_{ij}\sin 2\varphi_i) + \frac{1}{32}(\beta'_{ji}\sin 4\varphi_j - \beta_{ij}\sin 4\varphi_i)\right],$$

Дополнение 2. Исходя из общих разложений (2a), покажем, что азимут $A_{1.2}$ выравненной дуги $\Delta \Gamma_{1.2}$, идущей от точки 1 к точке 2 по кратчайшему пути, не равен азимуту $\stackrel{\checkmark}{A}_{1.2}$ выравненной дуги $\stackrel{\checkmark}{\Delta \Gamma_{1.2}}$, соединяющей те же точки 1, 2, но проведенной в противоположном направлении и потому вообще не являющейся кратчайшей на сфероидемежду указанными точками.

Предположим ради определенности, что $0 < A_{1.2} < \frac{\pi}{2}$ и что между концевыми точками 1,2 дуги $\Delta \Gamma_{1.2}$ не содержится вершин выравненной кривой $\Gamma_{1.2}$. Тогда азимут $A_{1.2}$ противоположной дуги $\Delta \Gamma_{1.2}$ будет удовлетворять условию $\pi < A_{1.2} < \frac{3}{2}$ π , и между концевыми точками 1,2 этой дуги будет содержаться две вершины кривой $\Gamma_{1.2}$: южная $O_{1.2}$ и северная $O_{1.2}$. Учитывая указанные особенности расположения выравненных дуг $\Delta \Gamma_{1.2}$ и $\Delta \Gamma_{1.2}$ на сфероиде, напишем для них,

ограничиваясь 2 членами, общие выражения разностей долгот $\Delta L_{1,2}$, $\Delta L_{1,2}$ согласно (2a.3), (6) и [Дел. 5; (5)]:

$$\Delta L_{1,2} = \sqrt{1 - e^2} (\vartheta_2 - \vartheta_1) + \frac{e^2}{2} \sqrt{1 - e^2} (\vartheta_2 - \vartheta_1) - \frac{e^2}{2} p_{1,2} \sqrt{1 - e^2} (\varphi_2 - \varphi_1);$$

$$\Delta \overset{\vee}{L}_{1,2} = -\sqrt{1 - e^2} \left[2\pi - (\overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1) \right] - \frac{e^2}{2} \sqrt{1 - e^2} \left[2\pi - (\overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1) \right] +$$

$$+ \frac{e^2}{2} \overset{\vee}{p}_{1,2} \sqrt{1 - e^2} \left[2\pi - (\overset{\vee}{\varphi}_2 - \overset{\vee}{\varphi}_1) \right],$$

причем эти разложения будут точны до малостей порядка e^4 [см. (2a)]. Так как $\Delta L_{1.2} > 0$, а $\Delta L_{1.2} < 0$, и концы дуг $\Delta \Gamma_{1.2}$, $\Delta \Gamma_{1.2} - 0$ дни и те же, то $\Delta L_{1.2} - \Delta L_{1.2} = 2\pi$, и мы будем иметь после деления обеих частей на $\sqrt{1-e^2}$:

$$\frac{\Delta L_{1,2} - \Delta L_{1,2}}{V \overline{1 - e^2}} = 2\pi \left(1 + \frac{e^2}{2} + \frac{3}{8} e^4 \right) = 2\pi \left(1 + \frac{e^2}{2} \right) + \\
+ \left(1 + \frac{e^2}{2} \right) \left[(\vartheta_2 - \vartheta_1) - (\vartheta_2 - \vartheta_1) \right] - 2\pi \frac{e^2}{2} p_{1,2} - \\
- \frac{e^2}{2} \left[p_{1,2} (\varphi_2 - \varphi_1) - p_{1,2}^{\vee} (\varphi_2 - \varphi_1) \right].$$

Разделив затем последнее равенство на 2π , получим далее опять с точностью до e^4 :

$$rac{3}{8}e^4pprox0pproxrac{1}{2\pi}[(artheta_2-artheta_1)-(artheta_2^2-artheta_1)]-rac{e^2}{2}\overset{\lor}{p}_{1,2}-\ -rac{e^2}{4\pi}\overset{\lor}{p}_{1,2}[(arphi_2-arphi_1)-(arphi_2^2-arphi_1)].$$

Отсюда вытекает, что

$$\frac{1}{2\pi}[(\theta_2 - \theta_1) - (\theta_2 - \theta_1)] = \frac{e^2}{2} \stackrel{\vee}{p}_{1,2} + \text{oct.}(\stackrel{\frown}{e}^4) = \frac{e^2}{2} \cos \stackrel{\vee}{B}_0 + \text{oct.}(\stackrel{\frown}{e}^4), \quad (7)$$

и, значит, в данном случае

$$\overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1 \neq \vartheta_2 - \vartheta_1. \tag{8}$$

Но, согласно делянке 5:

1)
$$\vartheta_{x} = \operatorname{arctg}(p \operatorname{tg} \varphi_{x}) = \operatorname{arctg} \frac{p \sin B_{x}}{\sqrt{\cos^{2} B_{x} - p^{2}}} =$$

$$= \operatorname{arctg} \frac{\cos B_{0} \sin B_{x}}{\sqrt{\cos^{2} B_{x} - \cos^{2} B_{0}}} = f(B_{0}, B_{x});$$
2) $\sin A_{1.2} = \frac{v_{1.2}}{|v_{1.2}|} \frac{\cos B_{0}}{\cos B_{1}} \sqrt{\frac{1 - e^{2} \sin^{2} B_{1}}{1 - e^{2} \sin^{2} B_{0}}} = \Psi(B_{0}, B_{1}).$

Поэтому из неравенства (8) следует, что

$$f(B_0, B_2) - f(B_0, B_1) \neq f(B_0, B_2) - f(B_0, B_1),$$
 (9)

т. е.

$$\overset{\vee}{B}_0
eq B_0.$$

Отсюда заключаем, что

$$\sin A_{1,2} = \Psi(B_0, B_1) \neq \Psi(B_0, B_1) = \sin A_{1,2}.$$
 (10)

Наше утверждение доказано.

Из рассмотрения преобразований, выполненных при выводе неравенств (9), (10), вытекает, что эти неравенства будут сохраняться и в том случае, когда на дуге $\Delta \Gamma_{1,2}$ находится, например, северная вершина $O_{1,2}$ выравненной кривой $\Gamma_{1,2}$, а на противоположной дуге $\Delta \Gamma_{1,2}$ лежит южная вершина $O_{1,2}$ соответствующей выравненной кривой $\Gamma_{1,2}$. Неравенства (9) и (10) еще более усилятся, если на дуге $\Delta \Gamma_{1,2}$ содержится $\sigma > 2$ вершин $O_{1,2}$ выравненной кривой $\Gamma_{1,2}$.

жится q>2 вершин $O_{1.2}$, $O_{1.2}$ выравненной кривой $\Gamma_{1.2}$. **Дополнение 3.** Подсчитаем разность долгот $\Delta L_{1.2}$ для того случая, когда начало 1 дуги $\Delta \Gamma_{1.2}$ есть южная вершина $O_{1.2}$ выравненной кривой $\Gamma_{1.2}$, а конец 2 дуги $\Delta \Gamma_{1.2}$ есть северная вершина $O_{1.2}$ кривой $\Gamma_{1.2}$, причем дуга $\Delta \Gamma_{1.2}$ пересекает экватор под азимутом $A_{\mathfrak{g}}^{(1.2)}$, который удов-

летворяет условию: $0 < A_{\mathfrak{s}}^{(1,2)} < \frac{\pi}{2}$.

При такой постановке задачи будем иметь прежде всего:

1)
$$\frac{v_{1,2}}{|v_{1,2}|} = +1;$$
 2) $\varphi_1 = \overline{\varphi_0} = -\frac{\pi}{2},$ $\varphi_2 = \varphi_0 = +\frac{\pi}{2};$

3)
$$\theta_1 = -\frac{\pi}{2}$$
, $\theta_2 = +\frac{\pi}{2}$; 4) $A_{1.2} = A_{2.1}' = \frac{\pi}{2}$;

5)
$$\beta_{1,2} = \frac{\varphi_2 - \varphi_1}{|\varphi_2 - \varphi_1|} = +1 = \beta'_{2,1};$$
 6) $\beta'_{2,1}\varphi_2 - \beta_{1,2}\varphi_1 = \Delta\varphi_{1,2} = \pi;$

7)
$$\beta'_{2.1} \vartheta_2 - \beta_{1.2} \vartheta_1 = \Delta \vartheta_{1.2} = \pi;$$
 8) $\beta'_{2.1} \sin 2u \varphi_2 - \beta_{1.2} \sin 2u \varphi_1 = 0.$

Вставляя найденные значения вспомогательных величин в разложение общего вида (2a. 3) и используя также равенства (3) — (8) делянки 5, выразим искомую разность долгот $\Delta L_{1.2}$ для дуги $\Delta \Gamma_{1.2}$ через вершинную широту B_0 :

$$\begin{split} \Delta L_{1.2} &= \sqrt{1 - e^2} \ \pi + \frac{e^2}{2} \sqrt{1 - e^2} \ \pi \left(1 - \cos B_0 \right) + \\ &+ \left[\frac{3}{8} e^4 \sqrt{1 - e^2} \ \pi \left(1 - \cos B_0 \right) - \frac{3}{16} e^4 \sqrt{1 - e^2} \ \pi \sin B_0 \cos B_0 \right] = \\ &= \sqrt{1 - e^2} \ \pi \left[1 - e^2 \sin^2 \frac{B_0}{2} + \frac{3}{16} e^4 \sin^2 \frac{B_0}{2} - \frac{3}{32} e^4 \sin 2B_0 \right] = \\ &= \sqrt{1 - e^2} \ \pi \left[1 - e^2 \sin^2 B_0 \left(1 - \frac{3}{16} e^2 \right) - \frac{3}{32} e^4 \sin 2B_0 \right] < \pi. \end{split}$$

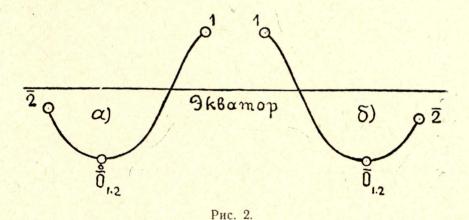
Таким образом, если $0 < A_{\mathfrak{s}}^{(1.2)} < \frac{\pi}{2}$, то для данной выравненной дуги $\Delta \Gamma_{1.2}$ разность долгот $\Delta L_{1.2} < \pi$. Отсюда следует, что для противоноложной дуги $\Delta \Gamma_{1.2}$ соответствующая разность долгот

$$\Delta \stackrel{\vee}{L}_{1,2} = 2\pi - \Delta L_{1,2} > \pi.$$

Из найденных соотношений

$$\Delta L_{1.2} < 0$$
, $\Delta \overset{\lor}{L}_{1.2} > 0$ при $A_{1.2} = A_{2.1}^{'} = \frac{\pi}{2}$, $B_{1} = \overline{B}_{\overline{0}} = -B_{2}$,

заключаем далее, что длины $s_{1,2}$, $s_{1,2}$ дуг $\Delta \Gamma_{1,2}$, $\Delta \Gamma_{1,2}$ также не равны друг другу, а именно $s_{1,2} < s_{1,2}$.


Наконец, так как для экваториальных азимутов $A_{\mathfrak{g}}^{(1,2)}$, $A_{\mathfrak{g}}^{(1,2)}$ дуг $\Delta \Gamma_{1,2}$, $\Delta \Gamma_{1,2}$ имеем

1)
$$A_{\vartheta}^{(1,2)} = F(B_1, B_2, \Delta L_{1,2}), \quad 2) A_{\vartheta}^{(1,2)} = F(B_1, B_2, \Delta L_{1,2})$$

и по доказанному выше $\Delta L_{1.2}
eq \Delta \overset{ee}{L}_{1.2}$, то, следовательно, $A_{\mathfrak{s}}^{(1.2)}
eq \overset{ee}{A}_{\mathfrak{s}}^{(1.2)}$.

Дел. 8. Примеры решения новыми способами первых трех основных задач на земном сфероиде

В заключение рассмотрим примеры решения предлагаемыми новыми способами первых трех основных задач на земном сфероиде. Пример 1. (прилож. 1, рис. 2a). Дается решение прямой задачи для выравненной дуги $\Delta \Gamma_{1,2}$ при расстоянии $s_{1,2}=25649~\kappa M$ и азимуте $A_{1,2}=229^{\circ}03'$, причем $B_1>0$, $B_2=\overline{B}_2<0$. Проложив дугу $\Delta \Gamma_{1,2}$

длины $s_{1,2}$ и под азимутом $A_{1,2}$ на глобусе, найдем, что между концевыми точками 1 и $2=\overline{2}$ этой дуги лежит южная вершина $\overset{\circ}{O}_{1,2}$ кривой $\Gamma_{1,2}$, а азимут $A_{2,1}'$ в точке $2=\overline{2}$ лежит в пределах $\frac{3}{2}$ $\pi < A_{2,1}' < 2\pi$.

Применяя поэтому для решения данной задачи разложения общего вида [Дел. 7; (2a)], будем иметь следующие рабочие выражения для вспомогательных величин $\beta_{1,2}$, $\beta_{2,1}'$,

 $\Delta \varphi_{1,2}, \ \Delta \vartheta_{1,2}$ и $(\beta_{2,1}^2 \sin 2u \varphi_2 - \beta_{1,2} \sin 2u \varphi_1)$:

1)
$$\beta_{1.2} = \frac{\cos A_{1.2}}{|\cos A_{1.2}|} = -1$$
, $\beta_{2.1}' = \frac{\cos A_{2.1}'}{|\cos A_{2.1}'|} = +1$;

2)
$$\Delta \varphi_{1,2} = \pi + \beta_{2,1}' \overline{\varphi_2} - \beta_{1,2} \varphi_1 = \pi + \varphi_1 - |\overline{\varphi_2}|;$$

3)
$$\Delta \vartheta_{1,2} = \pi + \beta'_{2,1} \overline{\vartheta}_{\overline{2}} - \beta_{1,2} \vartheta_{1} = \pi + \vartheta_{1} - |\overline{\vartheta}_{\overline{2}}|;$$

4)
$$\beta'_{2.1} \sin 2u \overline{\varphi_2} - \beta_{1.2} \sin 2u \varphi_1 = \sin 2u \varphi_1 - \sin 2u \overline{|\varphi_2|}$$
.

Решение задачи разбиваем на четыре части: 1) вычисление величин у, k^2 , τ^2 , φ_1 , C_0 , D_{2u} ; 2) вычисление B_2 ; 3) вычисление L_2 ; 4) вычисление $A_{2,1}$. При нахождении чисел C_0 , D_{2u} используем готовые значения вспомогательных коэффициентов $c_{2u,2\lambda}$, помещенные в приложении 3. При вычислении преобразованной широты φ_2 применяем ускоренный спо**с**об расчета поправки $\Delta \varphi_{1,2}$, указанный в примечании к [Дел. 4; (10)].

Пример 2. (прилож. 2, рис. 2, б). Дается решение обратной задачи для выравненной дуги $\Delta\Gamma_{1,2}$, длина которой $s_{1,2}=24447~\kappa M$, а азимут $A_{1.2}=147^{\circ}27'$, причем $B_1>0$, $B_2=\overline{B}_2<0$. После проложения дуги $\Delta\Gamma_{1,2}$ на глобусе выяснилось, что между концами 1, 2 этой дуги находится южная вершина $O_{1,2}$ кривой $\Gamma_{1,2}$, а азимут $A_{2,1}$ лежит в пределах $0 < A_{2.1}^{'} < \frac{\pi}{2}$. Отсюда следует, что

1)
$$\beta_{1.2} = -1$$
, $\beta'_{2.1} = +1$;

2)
$$\Delta \varphi_{1,2} = \pi + \varphi_1 - |\overline{\varphi_2}|$$
;

3)
$$\Delta \vartheta_{1,2} = \pi + \vartheta_1 - |\overline{\vartheta}_{\overline{2}}|;$$

1)
$$\beta_{1,2} = -1$$
, $\beta'_{2,1} = +1$; 2) $\Delta \varphi_{1,2} = \pi + \varphi_1 - |\overline{\varphi_2}|$; 3) $\Delta \vartheta_{1,2} = \pi + \vartheta_1 - |\overline{\vartheta_2}|$; 4) $\beta'_{2,1} \sin 2 u \overline{\varphi_2} - \beta_{1,2} \sin 2 u \varphi_1 = \sin 2 u \varphi_1 - \sin 2 u |\overline{\varphi_2}|$.

Все существенные вопросы решения данной задачи изложены достаточно подробно в делянке 5. Здесь же только отметим, что если в прямой задаче основной рабочей величиной является $v_{1,2} = \sin A_a^{(1,2)}$, то здесь такой величиной будет $p_{1,2} = \cos B_0^{(1,2)}$, которая находится последова-

тельным приближением из уравнения $\Delta L_{1.2} = \sum_{i=0}^{\infty} R_{1.2}(\lambda)$. Для опреде-

ления величины $p_{1,2}$ с точностью до 8-9 знаков достаточно 2 полных приближений и одного неполного, поверочного приближения даже при $s_{1.2} \approx 25000 \ \kappa M$.

После вычисления основной величины $p_{1,2}$, а попутно — и разности $\Delta \varphi_{1,2}$, находим азимуты $A_{1,2}$, $A_{2,1}$ и расстояние $s_{1,2}$ из равенств, в которых $\nu_{1,2}$ и $\mu_{1,2}$ выражены через $p_{1,2} = \cos B_0^{(1,2)}$.

Примеры 3 и 4. (приложения 4, 5; рис. 3). В этих примерах дано решение прямой сфероидической засечки двумя путями: а) с вычислением только координат B_3 , L_3 определяемой точки 3, б) с одновременным вычислением расстояний $s_{1,3}$, $s_{2,3}$ и координат B_3 , L_3 .

В обоих примерах решается одна и та же прямая засечка, опорные точки которой 1, 2 взяты вблизи Мурманска и Хабаровска, а определяемая точка 3 находится вблизи Сан-Франциско в США, так что расстояния $s_{1.3}$, $s_{2.3}$ от опорных точек до определяемой оказались почти равными: $s_{1.3}=8073~\kappa M$, $s_{2.3}=7947~\kappa M$. Азимуты засекающих лучей равны соответственно: $A_{1.3}=341^{\circ}13'$, $A_{2.3}=53^{\circ}06'$, причем северный полюс P сфероида попал внутрь треугольника 123 (рис. 3).

Последовательность вычисления прямой сфероидической засечки обоими указанными способами достаточно подробно изложена в делянке 6, но только в данных примерах вместо частных разложений были взяты разложения общего вида [Дел. 7; (2a)], так как на дугах $\Delta\Gamma_{1.3}$ и $\Delta\Gamma_{2.3}$ лежат северные вершины $O_{1.3}$ и $O_{2.3}$ выравненных кривых $\Gamma_{1.3}$, $\Gamma_{2.3}$. Здесь же мы ограничимся лишь отдельными замечаниями.

1. При вычислении прямой засечки по первому способу начальное значение $B_3^{(0)}$ широты определяемой точки 3 было получено ре-

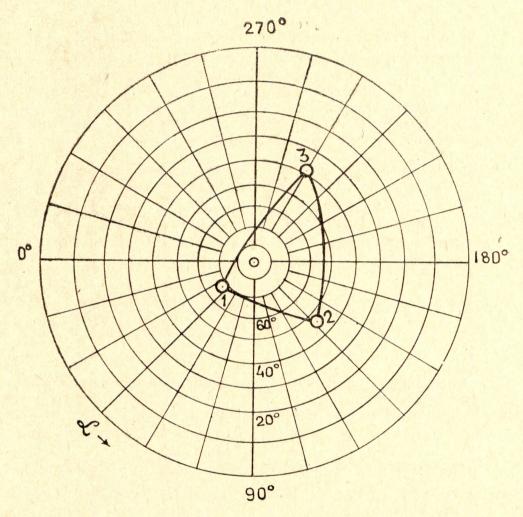


Рис. 3.

шением засечки на шаре с 5 десятичными знаками. Для вычисления координат B_3 , L_3 точки 3 на сфероиде с 8-9 знаками потребовалось два полных приближения (одно — с 6 знаками, другое—с 8-9 знаками) и одно поверочное неполное приближение.

2. При вычислении прямой засечки по второму способу начальные значения $\sigma_{1.3}^{(0)}$, $\sigma_{2.3}^{(0)}$ засекающих сторон 1.3, 2.3 в дуговой мере были получены 5-значным решением засечки на шаре. Но дальше требовалось найти соответствующие начальные значения $s_{1.3}^{(0)}$, $s_{2.3}^{(0)}$ длин этих сторон на сфероиде. С этой целью была вычерчена мелкая картографическая сетка северного полушария в полярной стереографической проекции (рис. 3), на которой затем было построено равноугольное изображение 1'2'3' соответствующего сферического треугольника 1°2°3°. Разбив каждую засекающую сторону i'3'=1'3', 2'3' треугольника 1'2'3' на четыре части, определили по картографической сетке с точностью

Приложение 1 Решение прямой задачи для выравненной дуги $\Delta \varGamma_{1,2}$

1. Исходные данные.		κ^6 κ^8	0.000 000236 0.000 000001 ₅	3. Вычис	ление B_2 .
		K°	0.000 0000015	15 M. A. C. L.	
B_1	68°34′15′′.739			$lg s_{1.2}$	7.4090 69146
L_1	29°42′16′′.347	$\lg \sin B_1$	9.968 88962	$\lg \sqrt{1-e^2} \sqrt{2}$	9.9998 88636
A _{1.2}	229°03′15′′.460	lg τ	0.017 19304	$-\lg(1-e^2)a^2$	6.8017 84509
\$1.2	25 648 923.7	Ig $\sin \varphi_1$	9.986 08266	$-\lg C_0$	0.0020 21260
		Ψ1	75°34′19′′.741	lg Q	0.6051 52013
2. Вычисле	ние величин:		attraction in	Q	4.028 58019
\vee , κ^2 , τ^2 ,	φ , C_0 , D_{2u}			$-(\pi+\varphi_1)$	4.460 57550
		1 1	1.000 000000	$\varphi_2^{(0)}$	-0.431 99531
		*) $c_{02} \kappa^2$	0.004 637921	Ψ2	
$lg \sin A_{1.2}$	9.878 13727n	$c_{04} \kappa^4$	0.000 026888	=	-24°45′05′′.4
$\log \cos B_1$	9.562 70597	$c_{06}\kappa^6$	161	0 (0)	
$-\lg V_1$	-0.000 19522	$c_{08}\kappa^8$	1	$\sin 2\varphi_2^{(0)}$	-0.760 440
$-\lg\sqrt{1-e^2}$	9.998 54166	C_0	+1.004 664971	sin 2\psi_1	$+0.482\ 605$
lg v	9.442 10636n			$\sin 4\varphi_2^{(0)}$	-0.9877
lg √²	8.884 21272	$c_{22}\kappa^2$	-0.002 318961	$+\sin 4\varphi_1$	0.8454
1g e²	7.825 64818	$c_{24}\kappa^4$	-0.000 017925	$\sin 6\varphi_2^{(0)}$	-0.52
$\lg e^2 \vee^2$	6.709 86090	$c_{26}\kappa^6$		$\sin 6\varphi_1$	+1.00
8	La la Aleccia	$c_{28}\kappa^8$	1	ε ₂ ⁽⁰⁾	-0.277 835
e^2	0.006 693422	C_2	-0.002 337008	ε(0)	-1.8331
e^2 $\sqrt{2}$	0.000 512697			ε(0)	+0.48
γ^2	0.076 59717	$c_{44}\kappa^4$	+0.000 002242	$-D_2 \varepsilon_2^{(0)}$	-0.000 646289
$e^2 - e^2 v^2$	0.006 180725	$c_{46}\kappa^6$	+ 24	$-D_4 \epsilon_4^{(0)}$	+0.000 004134
$1-e^2 v^2$	0.999 48730	C_4	+0.000 002266	$-D_6 \varepsilon_6^{(0)}$	+ 13
$1-v^2$	0.923 40283	Trans.		$\delta \varphi_2^{(0)}$	-0.000 642142
$\lceil \lg(e^2 - e^2 \vee^2) \rceil$	7.791 03942	$C_6 = c_{66} \kappa^6$	-0.000 000027		
	9.999 77728	A STATE OF THE PARTY.		$\cos 2\varphi_2^{(0)}$	+0.649 408
$l = -\frac{1}{\log(1-v^2)}$	9.965 39120	$C_2:C_0=D_2$	-0.002 326156	$\cos 4\varphi_2^{(0)}$	-0.15654
$lg \kappa^2$	7.791 26214		+0.000 002255	$\cos 6\varphi_2^{(0)}$	-0.060
$\lg \tau^2$	0.034 38608		-0.000 000027		+0.003 02125
κ^2	0.006 183895			$-4D_4\cos 4\varphi_2^{(0)}$	+0.000 00141
κ^4	0.000 038241		31-44-14	$-6D_6\cos6\varphi_2^{(0)}$	+ 1
				x	+0.003 02267
	Maria San San San San San San San San San Sa				

⁾ Значения чисел $c_{2u\cdot 2\lambda}$ даны в приложении 3.

			продол	жение пр	THOREMAN
	+0.996 97733 -0.000 644089	$\times p$ $ \omega \sqrt{1-e^2} $	0.275 90490 -0.996 6477		
$\varphi_2^{(0)}$	0.431 99531	γμ	-0.274 9800	$\epsilon_2 = \epsilon_2^{(1)}$	-0.2787
$\varphi_2^{(1)}$	-0.432 63940	The company			+0.1394
	_24°47′18′′,282	$\pi+\varphi_1$	4.460 576	$-1/2 \epsilon_2 + \Delta \varphi_{1.\overline{2}}$	+4.0279
		$\varphi_{\overline{2}}$	-0.432 639		+4.1673
$\sin 2\varphi_2^{(1)}$	_0.761 276	$\Delta \varphi_{1,2}$	+4.027 937	$ imes rac{\sigma_2}{3/16e^2\kappa^2}$ $ imes \mu$	-0.00000 21341
$\sin 4\varphi_2^{(1)}$	_0.9873	×	-0.274 9800	$\Delta R(1)$	0.00000 8893
$\sin 6\varphi_2^{(1)}$	_0.52	6			
ε ₂ (1)	_0.278 671		-1,107 002	$3/4e^{2}$	0.005 0201
ε ₄ (1)	-1.8327	lgtgφ ₂	9.664 47223 <i>n</i>	R(1)	0.009 0854
ε ₆ (1)	+0.48	$\lg p$	9.440 75941	$3/4e^2R(1)$	_0.000 045610
$-D_2 \epsilon_2^{(1)}$	_0.000 648232	lgtgφ ₁	0.589 60696	$-\Delta R(1)$	$\pm 0.000 \ 008893$
$-D_4 \varepsilon_4^{(1)}$	+0.000 004133	$\lg \lg(pt_{\overline{2}})$	9.105 23164n	$V_{\mu}F(2)=R(2)$	-0.000 037717
$-D_6\varepsilon_6^{(1)}$	+ 13	$lgtg(pt_1)$	0.030 36637		
$\Delta \varphi_2^{(0)}$	-0.000 644086	$pt_{\frac{1}{2}} = \theta_{\frac{1}{2}}$	-7°15′41′′.038	$\epsilon_4 = \epsilon_4^{(1)}$	-1.8327
$\varphi_2^{(0)}$	-0.431 99531	$pt_1 = \vartheta_1$	+47°00′05′′.268	$3/8\Delta\varphi_{1,\overline{2}}$	+1.5105
$\varphi_2^{(1)} = \varphi_{\overline{2}}$	-0.432 63940		219°44′24′′.230	$-1/4\varepsilon_2$	+0.0697
=	$-24^{\circ}47'18''.282$	$\Delta \theta_{1.\overline{2}}^{(0_1+0_2)}$	219°44′24′′.230 3.835 18761	$+1/32\varepsilon_4$	_0.0573
		$\times_{\omega V1\overline{-e^2}}$	_0.996 64767	σ_4	+1.5229
$\lg \sin \varphi_{\overline{2}}$		$\nu \mu F(0) = R(0)$	-3.822 33080	$\frac{\times}{5/16e^2\kappa^4}$ vp.	-0.00000 00220
—lg τ	0.017 19304	-8	+1.107 602	$\Delta R(2)$	-0.000 000034
$\lg \sin B_2$	9.605 29917 <i>n</i>	X	-2.714 729		
$\overline{B}_{\overline{2}}$	23°45′55′′.858	$e^2/2$	0.003 346711	$5/6e^2$	0.005 578
2 R.m	исление L_2	$\forall \mu F(1) = R(1)$	-0.0 09 085413	\times $R(2)$	-0.000 037717
Э. Выч	L_2			$5/6e^2R(2)$	<u>- 0.000 000210</u>
		$3/16e^2$	0.001 2550	$-\Delta R(2)$	+ 34
$\frac{v}{ v } = \omega$	7-1	$5/16e^2$	0.002 2092	$\gamma \mu F(3) = R(3)$	-0.000 000176
		$3/16e^2\kappa^2$	0.00000 77608	R(2)	0.000 037717
$\lg \frac{\omega}{\tau} =$		νμ	-0.27 498	R(1)	<u>-0.009</u> 08541 3
$= \lg \sin B_0$	9.982 80696 <i>n</i>	$5/16e^2\kappa^4$	0.00000 00800	R(0)	_3.822 33080
B_0	-73°59′02′′.590	3/16e ² κ ² νμ	-0.00000 21341	$\Delta L_{1.\overline{2}}$	-3.831 45411
$\lg \cos B_0 = \lg p$	9.440 75941	$5/16e^2\kappa^4$ vp.	-0.00000 00220	*	
	7 9.		M. Xey		
	* 方形 5 作。	2 /2 2 2	A LANGE OF THE STATE OF THE STA		

$\Delta L_{\overline{1.2}}$	-219°31′34″.139	
$+$ L_1	29°42′16′′.347	
$L_{\overline{2}}$	170°10′42′′.208	

4. Вычисление $A_{\overline{2.1}}$

$1g\sqrt{1-e^2}$	9.998 54166
lg v	9.442 10636n
$\log V_{\overline{2}}$	0.001 22217
$-\lg\cos B_{\overline{2}}$	_9.961 51714
$\lg \sin A'_{\frac{1}{2.} 1}$	9.480 35305 <i>n</i>
$A'_{\overline{2.1}}$	342°24′27′′.940 162°24′27′′.940
$A_{\overline{2.} 1}$	162°24′27′′.940

П риложение 2 Решение обратной задачи для выравненной дуги $\Delta \Gamma_{1.2}$

. Исходні	ые данные	$\Pi_1 - \Pi_2$	+0.63 169	e^2	0.00 6693
$B_{\overline{2}}$	—31°13′27″.653	$\sin \Delta L_{1.\overline{2}}$	_0.39 998	$ au^2$	1.03 973
B_1	+68°34′15′′.739	ctg $\alpha_{1.2}$	-1.57 930	e^2 : $ au^2=\kappa^2$	0.00 6438
$L_{\overline{2}}$ L_{1}	233°16′53′′.814 29°42′16′′.347	$\alpha_{1.\overline{2}} = A_{1.\overline{2}}^{(0)}$	147°39′30′′	$\stackrel{\sin B_2}{\times}$	-0.51 839
$\Delta L_{1.\overline{2}}$	203°34′37′′.467	3. Вычисле	ение $p = \cos B_0$	τ	+1.01 967
=	3.553 09023	а) Приближение 1		$^{\wedge}$ sin B_1	+0.93 087
	(0)	$\sin A_{1.2}^{(0)}$	+0.53 496	$\sin \varphi_{\overline{2}}$	-0.52 859
2. Вычисление $A_{1,\overline{2}}^{(0)}$		$\cos B_1$	<u>+0.36 535</u>	sin φ ₁	+0.94 918
$tg B_{\overline{2}}$	-0.60 621	$\cos B_0^{(0)} = p^{(0)}$	+0.19 545	$\varphi_{\overline{2}}$	-31°54′.36′′
\times $\cos B_1$	+0.36 535	$\frac{\times}{\frac{1}{ y }}\sqrt{1-e^2}$	+0.99 665	- φ1	+71°39′18′′
$\cos \Delta L_{1.\overline{2}}$	-0.91 653	νμ.	+0.19 480	$180^{\circ}+(\varphi_1+\varphi_{\overline{2}})$	219°45′ 42′′
\times sin B_1	+0.93 087	B_0	+78°43′44′′	$=\Delta \varphi_{1,\overline{2}}$	+3.83 527
π_1	-0.22 148	$\csc B_0 = \tau$	1.01 967	×	+0.19 480
Π_2				δ	+0.74 171

I have being a daying	which was a second or with the	the state of the s		The William V. Carlot	
$\Delta L_{1.\overline{2}}$	+3.553 090				
$\sqrt[\times]{1-e^2}$	+0.996 648	$\int \operatorname{tg} \varphi_{\overline{2}} = t_{\overline{2}}$	-0.62 269		9.794 39292 <i>n</i> 9.293 28519
$V 1-e^2$ $\forall \mu F(0) = R(0)$		$- \left \begin{array}{c} tg \varphi_1 = t_1 \\ (t_2 + t_1) \\ \times \end{array} \right $	+3.01 58 +2.3931	$-\frac{\lg p}{\lg \lg \varphi_1}$	0.480 30178
(b) 1((0			The Astron		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-6		$-\frac{ \sqrt{\mathbf{v}} }{ \mathbf{v} } \tau^2 \sqrt{1-e^2}$	+1.03 623	$-\frac{\operatorname{lgtg}(pt_2)}{\operatorname{lgtg}(pt_2)}$	9.08767811 <i>n</i>
	+2.794 07	$dw^{(0)} = \chi^{(0)}$	+2.4798	$\lg \lg (pt_1)$	9.773 58697
σ_0		$dp - \lambda$	+2.4790		
$\times \frac{e^2/2}{}$	0.003 3467	$p^{(0)}$	+0.195 450	$pt_{\overline{2}}=\vartheta_{\overline{2}}$	-6°58′35′′.936
$\forall \mu F(1) = R(1)$	+0.009 351	$-w^{(0)} = x = 0$	+ 1 015	$pt_1 = \theta_1$	+30°41′55′′.529
	1 2 2 2	$=\Delta p^{(0)}$		$\frac{180^{\circ} + (\vartheta_1 + \vartheta_{\overline{2}})}{180^{\circ} + (\vartheta_1 + \vartheta_{\overline{2}})}$	203°43′19′′.593
sin 9m	-0.8974	p (1)	+0.196 465		
$\sin 2\varphi_2$ +	-0.0974			$=\Delta \vartheta_{1.\overline{2}}$	+3.555 62156
$\sin 2\phi_1$	+0.59 75	б) Приб	лижение 2	$\sqrt{\frac{\times}{ y }}\sqrt{1-e^2}$	+0.996 64767
ε ₂	-0.2999	$p^{(1)} = \cos B_0$			
$-\frac{1}{2} \varepsilon_2$	+0.1500	$\lg p^{(1)} = \lg p$	9.293 28519	$-\delta$ σ_0	<u>-0.751 066</u>
$+$ $\Delta \varphi_{\overline{1.2}}$	+3.8353	B_0	+78°40′10′′.857	\/	+2.792 636
σ_2	+3.9853	$lgcscB_0=lg\tau$		$v\mu F(1) = R(1)$	$\begin{array}{r} 0.003\ 34671 \\ \hline +0.009\ 34614 \end{array}$
					, 0.000 0.1017
$3/16 e^2$	0.001 255	$\sqrt{\frac{\sqrt{ \mathbf{v} }}{ \mathbf{v} }}\sqrt{1-e^2}$	+0.996 648		
$3/16 e^2 \kappa^2$	0.0000 08079	^ p	+0.196 465	e^2 : $ au^2 = \kappa^2$	0.006 435
$3/16e^2\kappa^2$ vµ	+0 0000 01574	νμ	+0.195 806	\mathcal{K}^4	0.0000 4141
$ imes$ σ_2	+3.9853			3/16 e ²	0.001 255
ΔR (1)	0.0000 0627	$\lg \sin B_2$	9.714 65700 <i>n</i>	$5/16 e^2$	0,002 092
		lg τ	0.008 54760	$\frac{3/16}{\times}e^2\kappa^2$	0.0000 08076
$3,4 e^2$	0.005 020	$lg sin B_1$	9.968 88962	νμ	+0.19 581
$\times \frac{3,4 \ e^2}{R(1)}$	+0.009 351	lg sin φ ₂	9.723 20460 n	$5/16 e^2 \kappa^4$	0.0000 000866
$3/4 e^2 R(1)$	+0.000 047	lg sin φ ₁	9.977 43722		см. дальше
$-\Delta R$ (1)	_0.000 006	$\varphi_{\overline{2}}$	_31°55′02′′.186	sin 2φ ₂ +	-0.8975
νμF(2)=R(2)	+0.000 041	φ1	+71°41′26′′.029		+0.5965
		$180^{\circ}+(\varphi_1+\varphi_2)$	219°46′23′′.843	the state of the s	-0.3010
R(0)	+3.541 180	$=\Delta \varphi_{1.2}$	+3.835 76731	$-1/2 \epsilon_2$	+0.1505
R(1)	+0.009 351	X	+0.195 806		+3.8358
R (2)	+ 41	6	+0.751 066	THE COLUMN TWO IS NOT	+3.9863
$\Delta L_{1.2}^{(0)}$	+3.550 572			$\frac{\times}{3/16e^2\kappa^2}$ γμ	+0.6000 01581
$-\Delta L_{1,\overline{2}}$	+3.553 090	1 2 1		ΔR (1)	+0.0000 06302
w ⁽⁰⁾	_ 2 518				
			是是一个不是"T		A. A. Sandar

	Control of the latest and the latest				
$3/4 e^2$	0.005 020	$\operatorname{tg} \varphi_{\overline{2}} = t_{\overline{2}}$	 0.62 2 86	$180^{\circ} + (\vartheta_1 + \vartheta_2)$	203°43′19″.871
$\times_{R(1)}$	+0.009 346		+3 02 188	$=\Delta \vartheta_{1\cdot \overline{2}}$	+3.555 62291
	+0.0000 4692		KARSA ALAK	X 1·2	
	-0.0000 0630	$(t_1+t_{\overline{2}})$	+2.39 902	$\frac{\times}{\frac{\vee}{ \vee }}\sqrt{1-e^2}$	+0.996 64767
νμ $F(2)=R(2)$	+0.0000 4062	$\frac{\stackrel{\wedge}{\vee}}{ \vee } \tau^2 \sqrt{1-e^2}$	+1.03 666	νμ $F(0)=R(0)$	+3.543 70328
	4.5			-8	0.751 070
		$\frac{dw^{(1)}}{dp} = x^{(1)}$	+2.48 70		+2.792638
		$-w^{(1)}$: $x^{(1)}$		$e^2/2$	0.003 34671
		-w: x =	+ 53	νμF(1)=R(1)	+0.009 34613
$\sin 4\phi_2$	-0.7916	(1)	+ 53 +0.196 46500		
$\sin 4\phi_1$	-0.9575		+0.196 46553		
σ_4	-1.7491	p = p	+0.190 40000		i i
210	147-19-19	4. Поверочн	ый расчет для <i>р</i>	R(0)	+3.543 70328
	+1.4384	$p=\cos B_0$	+ 0.196 46553	R (1)	+0.009 34613
$-1/4 \epsilon_2$	+0.0753	1g p	9.293 28636	R (2)	+ 04062
	-0.0547		78°40′10′′.746	R(3)	+ 20
	+1.4590	$\lg \sin B_{\bar{z}}$	9.714 65700 <i>n</i>	$\Delta L_{1.2}^{(2)}$	+3.553 09023
	+0.0000 000170	$\lg \csc B_0 = \lg \tau$	0.008 54765	$\Delta L_{1.\overline{2}}$	+3.553 09023
ΔR (2)	+0.0000 000248	$lg sin B_1$	9.968 88962	$w^{(2)}$	0
		1	0.700 00405		
F1C 2	0.005 550	$\lg \sin \varphi_2$	9.723 20465 <i>n</i>		
$5/6 e^2$	0.005 578	$\begin{array}{c c} \lg \sin \varphi_{\overline{2}} \\ \lg \sin \varphi_{\overline{1}} \end{array}$	9.723 20465 <i>n</i> 9.977 43727	5. Вычисле	ние $A_{1,2}$ и $\hat{A}_{2,1}$
$ \begin{array}{c} 5/6 \ e^2 \\ \times \\ R \ (2) \end{array} $	$\begin{array}{c} 0.005\ 578 \\ +0.0000\ 4062 \end{array}$				ние $A_{1,2}$ и $\hat{A}_{2,1}$
×	100	$\begin{array}{c} \text{lg sin } \phi_1 \\ \\ \phi_{\overline{2}} \end{array}$	9.977 43727	$\lg \frac{v}{ v } p$	9.923 28636
× R (2)	+0.0000 4062	$\begin{array}{c} \text{lg sin } \phi_1 \\ \\ \phi_{\overline{2}} \\ \\ \phi_1 \end{array}$	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg & V_1 \end{array} $	9.923 28636 0.000 19522
$\times R (2)$ $5/6 e^{2}R (2)$ $-\Delta R (2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{lg sin } \phi_1 \\ \\ \phi_{\overline{2}} \end{array}$	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg & V_1 \end{array} $	9.923 28636
$\times R (2)$ $5/6 e^{2}R (2)$ $-\Delta R (2)$	$ \begin{array}{r} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \end{array} $	$\begin{array}{c} \text{lg sin } \phi_1 \\ \\ \phi_2 \\ \\ \phi_1 \\ \\ 180^\circ + (\phi_1 + \phi_2) \end{array}$	$9.977 \ 43727$ $-31^{\circ}55' \ 02''.201$ $+71^{\circ}41'26''.100$ $219^{\circ}46'23''.899$	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg V_1 \\ -\lg V_0 \\ -\lg \cos B_1 \end{array} $	9.923 28636 0.000 19522 -0.000 05647
$\times R (2)$ $5/6 e^{2}R (2)$ $-\Delta R (2)$	$ \begin{array}{r} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \end{array} $	$\log \sin \varphi_{1}$ φ_{2} φ_{1} $180^{\circ} + (\varphi_{1} + \varphi_{2})$ $= \Delta \varphi_{1.2}$ \times	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg & V_1 \\ -\lg & V_0 \\ -\lg \cos B_1 \end{array} $ $ \lg \sin A_{1.\overline{2}} $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597
\times $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\nu F(3) = R(3)$	$ \begin{array}{r} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \\ +0.0000 \ 0020 \end{array} $	$\begin{array}{c} \text{lg sin } \varphi_{\overline{1}} \\ \varphi_{\overline{2}} \\ \varphi_{1} \\ 180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}}) \\ = \Delta \varphi_{1.\overline{2}} \\ \times \\ \vee \mu \end{array}$	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg V_1 \\ -\lg V_0 \\ -\lg \cos B_1 \end{array} $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914
\times $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\Rightarrow F(3) = R(3)$ $\Rightarrow R(0)$ $\Rightarrow R(1)$ $\Rightarrow R(2)$	$ \begin{array}{r} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \\ +0.0000 \ 0020 \\ +3.543 \ 70194 \end{array} $	$\begin{array}{c} \log \sin \varphi_{1} \\ \varphi_{\overline{2}} \\ \varphi_{1} \\ 180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}}) \\ = \Delta \varphi_{1.\overline{2}} \\ \times \\ \psi_{\mu} \\ \delta \end{array}$	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg V_1 \\ -\lg V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \end{array} $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914
\times $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\forall \mu F(3) = R(3)$ $R(0)$ $R(1)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{lg sin } \varphi_{\overline{1}} \\ \varphi_{\overline{2}} \\ \varphi_{1} \\ 180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}}) \\ = \Delta \varphi_{1.\overline{2}} \\ \times \\ \vee \mu \end{array}$	9.977 43727 -31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg & V_1 \\ -\lg & V_0 \\ -\lg \cos B_1 \end{array} $ $ \lg \sin A_{1.\overline{2}} $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800
\times $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\Rightarrow F(3) = R(3)$ $\Rightarrow R(0)$ $\Rightarrow R(1)$ $\Rightarrow R(2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \lg \sin \varphi_{1} \\ \varphi_{\overline{2}} \\ \varphi_{1} \\ 180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}}) \\ = \Delta \varphi_{1,\overline{2}} \\ \times \\ \psi_{1} \\ \delta \end{array}$	9.977 43727 - 31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070 9.794 39299	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg V_1 \\ -\lg V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \end{array} $ $ \lg \frac{v}{ v } p $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636
× $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\nu \mu F(3) = R(3)$ $R(0)$ $R(1)$ $R(2)$ $R(3)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log \sin \varphi_{1}$ $\varphi_{\overline{2}}$ φ_{1} $180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}})$ $= \Delta \varphi_{1,\overline{2}}$ \times φ_{μ} δ $\log \log \varphi_{\overline{2}}$ $\log p$	9.977 43727 - 31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070 9.794 39299 9.293 28636	$\begin{array}{c} \lg \frac{v}{ v } \ p \\ \ \lg \ V_1 \\ -\lg \ V_0 \\ -\lg \cos B_1 \\ \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \\ \\ \lg \frac{v}{ v } \ p \\ \lg \ V_2 \end{array}$	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636 0.001 06741
\times $R(2)$ $5/6 e^{2}R(2)$ $-\Delta R(2)$ $\Rightarrow \mu F(3) = R(3)$ $\Rightarrow R(0)$ $\Rightarrow R(1)$ $\Rightarrow R(2)$ $\Rightarrow R(3)$ $\Rightarrow L_{1.2}^{(1)}$ $\Rightarrow L_{1.2}^{(1)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \lg \sin \varphi_{1} \\ \varphi_{\overline{2}} \\ \varphi_{1} \\ 180^{\circ} + (\varphi_{1} + \varphi_{\overline{2}}) \\ = \Delta \varphi_{1,\overline{2}} \\ \times \\ \gamma \mu \\ \hat{o} \\ \\ \lg \lg \varphi_{\overline{2}} \\ \lg g \varphi \\ \\ \lg \lg \varphi_{1} \end{array}$	9.977 43727 - 31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070 9.794 39299 9.293 28636 0.480 30229	$ \begin{array}{ccc} \lg \frac{v}{ v } & p \\ \lg V_1 \\ -\lg V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \end{array} $ $ \begin{array}{c} lg \sin A_{1.\overline{2}} \\ v \\ \lg V_{\overline{2}} \end{array} $ $ -\lg V_0 $	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636 0.001 06741 -0.000 05647
$ \begin{array}{c} \times \\ R (2) \\ 5/6 \ e^2 R (2) \\ -\Delta R (2) \\ \text{vp} F(3) = R(3) \\ \end{array} $ $ \begin{array}{c} R (0) \\ R (1) \\ R (2) \\ R (3) \\ \end{array} $ $ \begin{array}{c} \Delta L_{1.\overline{2}}^{(1)} \\ -\Delta L_{1.\overline{2}} \end{array} $	$\begin{array}{c} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \\ +0.0000 \ 0020 \\ \\ +3.543 \ 70194 \\ +0.009 \ 34614 \\ + 4062 \\ + 20 \\ \\ +3.553 \ 08890 \\ +3.553 \ 09023 \\ \end{array}$	$\log \sin \varphi_{1}$ φ_{2} φ_{1} $180^{\circ} + (\varphi_{1} + \varphi_{2})$ $= \Delta \varphi_{1,2}$ \times φ_{1} δ $\log \log \varphi_{2}$ $\log p$ $\log \log \varphi_{1}$ $\log pt_{2}$ $\log pt_{1}$	9.977 43727 - 31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070 9.794 39299 9.293 28636 0.480 30229 9.087 67935	$\begin{array}{c} \lg \frac{v}{ v } \ p \\ \lg \ V_1 \\ -\lg \ V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \\ \lg \frac{v}{ v } \ p \\ \lg \ V_{\overline{2}} \\ -\lg \cos B_{\overline{2}} \\ \lg \sin A'_{\overline{2},1} \end{array}$	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636 0.001 06741 -0.000 05647 -9.932 03927
$ \begin{array}{c} \times \\ R (2) \\ 5/6 \ e^2 R (2) \\ -\Delta R (2) \\ \text{vp} F(3) = R(3) \\ \end{array} $ $ \begin{array}{c} R (0) \\ R (1) \\ R (2) \\ R (3) \\ \end{array} $ $ \begin{array}{c} \Delta L_{1.\overline{2}}^{(1)} \\ -\Delta L_{1.\overline{2}} \end{array} $	$\begin{array}{c} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \\ +0.0000 \ 0020 \\ \\ +3.543 \ 70194 \\ +0.009 \ 34614 \\ + 4062 \\ + 20 \\ \\ +3.553 \ 08890 \\ +3.553 \ 09023 \\ \end{array}$	$\log \sin \varphi_{1}$ φ_{2} φ_{1} $180^{\circ} + (\varphi_{1} + \varphi_{2})$ $= \Delta \varphi_{1,2}$ \times φ_{1} δ $\log \log \varphi_{2}$ $\log \varphi_{1}$ $\log p t_{2}$ $\log p t_{1}$ $p t_{2} = \vartheta_{2}$	9.977 43727 - 31°55′ 02″.201 +71°41′26′′.100 219°46′23′′.899 +3.835 76799 +0.195 807 +0.750 070 9.794 39299 9.293 28636 0.480 30229 9.087 67935 9.773 58865 -6°58′36′′,0)8	$\begin{array}{c} \lg \frac{v}{ v } \ p \\ \lg \ V_1 \\ -\lg \ V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \\ \\ \lg \frac{v}{ v } \ p \\ \lg \ V_{\overline{2}} \\ -\lg \cos B_{\overline{2}} \\ \lg \sin A'_{\overline{2}.1} \\ \end{array}$	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636 0.001 06741 -0.000 05647 -9.932 03927 9.362 25803 13°18′49′′.009
$ \begin{array}{c} \times \\ R (2) \\ 5/6 \ e^2 R (2) \\ -\Delta R (2) \\ \text{vp} F(3) = R(3) \\ \end{array} $ $ \begin{array}{c} R (0) \\ R (1) \\ R (2) \\ R (3) \\ \end{array} $ $ \begin{array}{c} \Delta L_{1.\overline{2}}^{(1)} \\ -\Delta L_{1.\overline{2}} \end{array} $	$\begin{array}{c} +0.0000 \ 4062 \\ +0.0000 \ 00227 \\ - 025 \\ +0.0000 \ 0020 \\ \\ +3.543 \ 70194 \\ +0.009 \ 34614 \\ + 4062 \\ + 20 \\ \\ +3.553 \ 08890 \\ +3.553 \ 09023 \\ \end{array}$	$\log \sin \varphi_{1}$ φ_{2} φ_{1} $180^{\circ} + (\varphi_{1} + \varphi_{2})$ $= \Delta \varphi_{1,2}$ \times φ_{1} δ $\log \log \varphi_{2}$ $\log p$ $\log \log \varphi_{1}$ $\log pt_{2}$ $\log pt_{1}$	$9.977 \ 43727$ $-31^{\circ}55' \ 02''.201$ $+71^{\circ}41'26''.100$ $219^{\circ}46'23''.899$ $+3.835 \ 76799$ $+0.195 \ 807$ $+0.750 \ 070$ $9.794 \ 39299$ $9.293 \ 28636$ $0.480 \ 30229$ $9.087 \ 67935$ $9.773 \ 58865$	$\begin{array}{c} \lg \frac{v}{ v } \ p \\ \lg \ V_1 \\ -\lg \ V_0 \\ -\lg \cos B_1 \\ \lg \sin A_{1.\overline{2}} \\ A_{1.\overline{2}} \\ \lg \frac{v}{ v } \ p \\ \lg \ V_2 \\ -\lg \cos B_2 \\ \lg \sin A'_{2.1} \\ A'_{2.1} \end{array}$	9.923 28636 0.000 19522 -0.000 05647 -9.562 70597 9.730 71914 147°27′27′′.800 9.923 28636 0.001 06741 -0.000 05647 -9.932 03927 9.362 25803

				1
6. Вычис	еление $s_{1,\overline{2}}$.	$\sin 2\varphi_{\overline{2}}$	-0.897 524	Значение чисел
$lg(1-e^2)$	9.997 083312	$+\sin 2\varphi_1$	+0.596 488	$C_{0.2\lambda}, C_{2\mathfrak{u}.2\lambda}.$
$+$ $\log V_0$	0.000 056473	$\sin 4\varphi_{\frac{1}{2}}$	-0.7916	1) $c_{0.2\lambda} = (-1)^{\lambda} \frac{\binom{-3/2}{\lambda} \binom{2\lambda}{\lambda}}{2^{2\lambda}}$
lg μ	9.997 139785	$+\sin 4\varphi_1$	-0.9575	1) $c_{0.2\lambda} = (-1)^{\lambda} \frac{1}{2^{2\lambda}}$
lg a	6.804 701197	$\sin 6\varphi_{\frac{1}{2}}$	+0.21	$2) c_{2u,2\lambda} = (-1)^{\lambda - u}.$
lg aμ	6.801 840982	$+\sin 6\varphi_1$	+0.87	$\left(-3/2\right)\left(2\lambda\right)$
		ϵ_2	-0.301 0 36	$\cdot \frac{\binom{-3/2}{\lambda}\binom{2\lambda}{\lambda-u}}{2^{2\lambda}}$
$\log e^2$	7.825 64818	ε ₄	-1.7491	$(u, \lambda = 1, 2, \dots, n; \ u \leq \lambda)$
$-$ lg τ^2	0.017 09530	ϵ_6	+1.08	$(u, k=1,2, \dots, n, u \leq k)$
$\lg k^2$	7.808 55288	$C_2 \varepsilon_2$	+0.000 732330	$c_{02} = +0.75$ $c_{22} = -0.375$
k^2	0.00643 50641	$+C_4 \varepsilon_4$	- 4291	$c_{04} = +0.703125$ $c_{24} = -0468750$
k^4	0.00004 14100	$C_6 \varepsilon_6$	_ 34	$c_{06} = +0.6836$ $c_{26} = -0.5127$
k^6	0.00000 02665	$\Delta \sigma_{1.\overline{2}}$	+0.000 72802	$c_{08} = +0.63$ $c_{28} = -0.54$
k^8	0.00000 00017	lg Δσ _{1.2}	6.86214_10	
		lg ap	6.80 184	$c_{44} = +0.058594$ $c_{66} = -0.116$
1	1.000 000000	$1g\Delta s_{1.\overline{2}}^{(0)}$	3.66 398	$c_{4.6} = +0.1025$ $c_{68} = -0.03$
*) $c_{02} k^2$	0.004 826298	$\Delta s_{1,\bar{2}}^{(0)}$	+4613.0 M	$c_{4.8} = +0.13$
$c_{04} k^4$	0.000 029116			Y A Section
$c_{06} k^6$	0.000 000 187	$\lg C_0$	0.002 103657	$c_{88} = +0.0517$
$c_{08} k^8$	01	$\log \Delta \varphi_{1.\overline{2}}$	0.583 852331	
C_0	÷1.004 85560	lg ap	6.801 840982	
		$\lg s_{1,\overline{2}}^{(0)}$	7.387 796970	
$c_{22} k^2$	-0.002 413149	$s_{1,\overline{2}}^{(0)}$	24 422 885.1	Agricultural Company
$c_{24} k^4$	_ 019411	$\Delta s_{1,\bar{2}}^{(0)}$	4613.0	
$c_{26} k^6$	137	s _{1.2}	24 427 488.1	
C_2	-0,002 43270			
$c_{44} k^4$	+0.000 002426			
$c_{46} k^6$	+ 27			
C_4	+0.000 002453			
$c_{66} k^6 = C_6$				

^{*)} См. Приложение 3.

Приложение 4 Решение прямой выравненнолучевой засечки (первый способ)

		ot = 1	2.0410	1 ctg/22	+ 0.75 101
1. Исході	ные данные.	\times ctg $A_{1.3}$	- 2.9410	$ctgA_{2,3}$	
		$\sin\Theta_2$	+ 0.69 202	$\sin\Delta L_{2.3}$	+ 0.97 053
B_1	67°28′52″.763	: $\sin\Theta_1$	+ 0.38 298	$\cos\Theta_2$	+0.72188
L_1	36°54′39″.412	$ctgA_{2.3}$	+ 0.75 101	$\times \cos \Delta L_{2.3}$	— 0 .24 099
	0.644 21757	$\times \cos \Delta L_{1.2}$	- 0.16 004	Ж1	+ 0.72 888
A _{1.3}	341°13′15″.376	$\cos \Theta_2$	+ 0.72 188	ж ₂	- 0.17 397
		\times $\sin \Delta L_{1.2}$	+ 0.98 711	$w_1 + w_2$	+ 0.55 491
B_2	46°12′34″.548	+ H ₁	- 5.31 420	: $\sin\Theta_2$	+ 0.69 202
L_2	136°07′13″.693	— Н2	+ 0.12 019	$tgB_3^{(0)}$	+ 0.80 187
=	2.375 75039	— нз	0.71_257		20040407//
$A_{2.3}$	53°05′34″.727	b	- 5.90 658	$B_3^{(0)} \approx B_3$	38°43′27″
2. Вычисле	ние $B_3^{(0)}$, $L_3^{(0)}$	$\frac{a}{b} = \operatorname{tg}\Delta L_{1.3}^{(0)}$	+ 0.42 766		
		$\Delta L_{1.3}^{(0)}$	203°09′16″		
$90^{\circ}-B_1=\Theta_1$	22°31′07″	$+L_1$	36°54′39″		
$90^{\circ}-B_2=\Theta_2$	43°47′25″	$L_3^{(0)}$	240°03′55″		
$\Delta L_{1.2}$	99°12′34″	$-L_2$	136°07′14″	,	
		$\Delta L_{2.3}^{(0)}$	103°56′41″		
$\cos \Theta_2$	+ 0.72 188	1000			
$\times \cos \Delta L_{1.2}$	- 0.16 004	ete Ar a	- 2.9410		
ctgA2.3	+ 0.75 101	\times	-2.9410 -0.39321		
\times $\sin \Delta L_{1.2}$	+ 0.98 711	$\sin \Delta L_{1.3}^{(0)}$	$\frac{-0.93 321}{+0.92 376}$		
		$\cos \Theta_1 \times$			
$\times \frac{ctg\Theta_1}{\times}$	+ 2.41 200	$\cos \Delta L_{1.3}^{(0)}$			
$\sin\Theta_2$	+ 0.69 202	Γ_1	+ 1.15 643		
+ n ₁	— 0.11 553	Γ_2	- 0.81 935	All Market	
$-\pi_2$	- 0.74 133	$\Gamma_1 + \Gamma_2$	+0.30708	An Your Trees	Eligible File
— пз	1.66 915	$: sin \Theta_1$	+ 0.38 298		
a	— 2.52 601	$tgB_3^{(0)}$	+ 0.80 182		7 7 123

			1	and the state of the state of	
- 3. Расчет в	величин v_{i3} , k	p_{i3}^2 , τ_{i3} , p_{i3} ,	p	0.123 23565	0.553 02697
	$v_{i3} \mu_{i3}$, φ_i^3 , ϑ_i^3	; $(i = 1,2)$	$\omega \sqrt{1-e^2}$	0.996 64767	+ 0.996 64767
			Nh	-0.122 8226	+ 0.551 1730
$-\lg\sin A_{i3}$	9.507 74760 n	9.902 87881			
$1g\cos B_i$	9.583 18128	9.840 12007.	$lgsinB_3$	9.965 55668	9.858 46269
$-\lg V_i$	-0.000 21452	-0.000 69961	$+$ $\lg \tau_{i3}$	0.003 32312	0.079 26984
$-\lg\sqrt{1-e^2}$	-9.998 54166	-9.99854166	lgsinφ ³	9.968 87980	9.937 73253
lgv _{i3}	9.092 17270 n	9.743 75761	φ3,	68°34′03″.855	60°02′46″.239
1 g v^2	8.184 34540	9.487 51522	$\frac{1}{1 \text{gtg} \varphi_i^3}$	0.406 11008	0.239 36934
1 g e^2	7.825 64818	7.82564818	$+$ $\lg p_{i3}$	9.090 73637	9.742 74631
$1ge^2v^2$	6.009 99358	7.313 16340	lgtgϑ³;	9.496 84645	9.982 11565
			ϑ_i^3	17°25′44″.940	43°49′14″,183
e^2	0.006 693422	0.006 693422			
e^2 e^2 e^2	0.000 033422	0.000 055422	4. Перво	е приближени	е для <i>B</i> ₃ , <i>L</i> ₃
$\sqrt{2}$	0.015 28781	0.307 26650	p(0) = p	20042/07//	
$e^2 - e^2 v^2$	0.006 591094	0.004 636758	$B_3^{(0)} \approx B_1$	38°43′27″	
$1-e^2$ \vee^2	0.999 89767	0.997 94334	lgsinB ₃	9.796 277	9.796 277
$1-\gamma^2$	0.984 71219	0.692 73350	$1g\tau_{i3}$	0.003 323	0.079 270
$ \lg(v^2 - e^2v^2) \\ - $	7.818 95750	7.666 21443	lgsin φ_3^i	9.799 600	9.875 547
$= \lg(1 - e^{2} \vee^{2})$	9.999 95556	9.999 10588	φ_3^i	39°04′40″.4	48°39′47″.2
$\lg(1-v^2)$	9.993 30932	9.840 56619	φ_{i}^{3}	68°34′03″.9	60°02′46″.2
$1gk^2$	7.819 00194	7.667 10855	$180^{\circ} - (\varphi_{i}^{3} + \varphi_{3}^{i})$	+ 72°21′15″.7	+ 71°17′26″.6
$1g\tau^2$	0.006 64624	0.158 53969	$\pi - (\varphi_i^3 + \varphi_i^i)$	+1.262822	+ 1.244 258
$-k^2$	0.006 591768	0.004 646314	× vµ	_ 0.122 82	+ 0.551 17
k^4	0.006 043451	0.000 021588	δ	- 0.15 510	+0.68580
k^6	0.000 000286	0.000 000100			
k ⁸	0.000 0000019	0.000 0000005	$lgtg\phi_3^{i}$	9.909 576	0.055 684
			$+$ $\lg p_{i3}$	9.090 736	9.742 746
$1g\frac{1}{\tau} = 1g\sin B_0$	9.996 67688	9.920 73016	$lgtg\vartheta_3^i$	9.000 312	9.798 430
B_0	82°55′16″.038	56°25′30″.272	$\frac{\vartheta i}{3}$	5°42′52″.8	32°09′24″.5
$\lg \cos B_0 = \lg p_0$	9.090 73637	9.742 74631	θ_{i}^{3}	17°25′44″.9	43°49′14″.2
$\frac{v}{ v } = \omega$	-1	+1	$180^{\circ} - (\vartheta_{i}^{3} + \vartheta_{3}^{i})$	156°51′22″.3	104°01′21″.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A PAGE AND A STATE OF THE PAGE	1			CONTRACTOR OF THE PARTY OF THE

$\pi - (\theta_i^3 + \theta_i^i)$	2.737 6571	1.815 5367	$lg\sqrt{1-e^2}$	9.99 854	9.99 854
$\sim \times \frac{1}{\omega \sqrt{1-e^2}}$	- 0.996 64767	+0.99664767	lgv _{i3}	9.09 217 n	9.74 376
$\forall \mu F(0) = R(0)$	_ 2.728 4796	+ 1.809 4504	$\lg V_3$	0.00 089	0.00 089
6 - 6	+ 0.155 10	- 0,685 80	$-\lg\cos B_3$	- 9.89 219	<u> </u>
σ_0	- 2.57 338	+ 1.123 65	$lgsinA'_{3i}$	9.19 941 n	9.85 100
$\times e^{2/2}$	0.003 3467	0.003 3467	A'_{3i}	189°06′24″	134°48′00″
$\gamma \mu F(1) = R(1)$	- 0.008 6123	+0.003 7605	$lgtgA_{3i}^{'}$	9.20 491	0.00 303 n
$3/16 e^2$	0.001 2550	0.001 2550	$-\lg V_3^2$	-0.00 178	- 0.00 178
$3/16 e^2$	0.000 00827	0.000 00583		- 9.89 219	_ 9.89 219
	+ 0.979	+0.992	$\lg \frac{\partial L_3^i}{\partial B_3} = \lg a_{i3}$	9.31 094	0.10 906 n
$-\left[\begin{smallmatrix}\sin 2\varphi_3^i\\+\\\sin 2\varphi_I^3\end{smallmatrix}\right]$	+ 0.680	+ 0.865	a_{i3}	+ 0.20461	- 1.28 541
ϵ_2	1.659		$b = a_{1.3} - a_{2.3}$	+ 1.4901	
$-\frac{1}{2}\varepsilon_2$	+ 0.830	+ 0.928			
$\frac{\tau}{\pi - (\varphi_i^3 + \varphi_3^i)}$	+ 1.263	+1.244	$\left(\frac{\partial L_3^1}{\partial R_3} - \frac{\partial L_3^2}{\partial R_3}\right)$	$\delta B_3^{(0)} + w_L^{(0)} = 0$	
σ_2	+ 2.093	+ 2.172	$\langle 0D_3 0D_3 \rangle$		
$3/16 \ e^2 k^2 v\mu$	_ 0.000 00102	+0.00000321	+1.49001	$\delta B_3^{(0)} + 267''.46 = 0$	
$\Delta R(1)$	- 0.000 0021	+ 0.000 0070			2
			$\delta B_3^{(0)}$	_ 0.000 87024	-02'59''.50
$3/4 e^2$	+ 0.005 020	+ 0.005 020	$B_3^{(0)}$		38°43′27″.0
\times $R(1)$	- 0.008 612	+0.003761	$B_3^{(1)}$		38°40′27″.5
$3/4 e^2 R(1)$	- 0.000 0432	+ 0.000 0189		MARIO A	
$-\Delta R(1)$	+ 21	— 70	10	+ 0.20461	- 1.28 541
$\neg \mu F(2) = R(2)$	-0.000 0411	+0.000 0119	$ imes \delta B_3^{(0)}$	0.000 87024	-0.000 87024
R(1)	- 0.008 6123	+ 0.003 7605	$\delta L_i^{(0)}$	-0.000 1781	+ 0.001 1186
R(0)	_ 2.728 4796	+1.8094504	(0)	4.190 2699	4.188 9732
$\nabla L_{1.3}^{(0)}, \ \Delta L_{2.3}^{(0)}$		+ 1.813 2228			
$L_1+2\pi$, L_2	+ 6.927 4029	·+2.375 7504	$L_i^{(1)} \approx L_3$	4.190 0918	4.190 0918
$L_{i}^{(0)}$	4.190 2699	4.188 9732	3		
w(0) L	0.001 2967	+ 267".46			
	2 7 7 7 8 8 8			-8	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5. Второ	5. Второе приближение для B_3 , L_3 $\int \sin 2\varphi_3^i + 0.9783 + 0.9922$						
			$\left -\right _{\sin 2\varphi_i^3}$	+ 0.6803	+0.8652		
$B_3^{(1)} \approx B_3$	38°40′27″.5			0.407	0.040		
	7	1/1/19	$-\begin{bmatrix} \sin 4\varphi_3^i \\ \bot \end{bmatrix}$	+ 0.405	- 0.248		
$lgsinB_3$	9.795 80539	9.795 80539	$\left -\right _{\sin 4\varphi_i^3}$	0.997			
1gτ _{i3}	0.003 32312	0.079 26984		- 1.6586	— 1.8574		
lgsin φ_3^i	9.799 12851	9.875 07523	ϵ_4	+0.592	+ 1116		
φ_3^i	39°01′38″.777	48°35′32″.882					
φ_{i}^{3}	68°34′03″.855	60°02′46″.239		+ 0.8293	+ 0.9287		
$180^{\circ} - (\varphi_i^3 +$	72°24′17″.368	71°21′40″.879	+				
$+ \varphi_3^i $ $\pi - (\varphi_i^3 + \varphi_3^i)$	orten Pa		$\pi - (\varphi_i^3 + \varphi_3^i)$	+ 1.2637	+ 1.2455		
$\pi - (\varphi_i^3 + \varphi_3^i)$	1.263 70258	1.24549061	imes	+2.0930	+2.1742		
× vµ	-0.122 8226	+ 0.551 1730	$3/16 e^2 k^2 v\mu$	- 0.000 001016	+ 0.000 003214		
6	— 0.155 2113	+ 0.686 4808	$\Delta R(1)$	0.000 002126	+ 0.000 006988		
$lgtg\varphi_3^{i}$	9.908 79441	0.054 60416		0.005 0200	0.005 0200		
$1gp_{i3}$	9.090 73637	9.742 74631	\times $R(1)$	-0.008 61258	0.003 76199		
$lgtg\theta_3^i$	8.999 53078	9.797 35047	$3/4 e^2 R(1)$	- 0.000 043235	+ 0.000 018885		
θ_3^l	5°42′16″.082	32°05′33″.491	$-\Delta R(1)$	+ 0.000 002126	- 0.000 006988		
ϑ_{i}^{3}	17°25′44″.940	43°49′14″.183	p γμ $F(2) = R(2)$	-0.000041109	+ 0.000 011897		
$180^{\circ} - (\vartheta_{i}^{3} +$	156°51′58″.968	104°05′12″.326	$\frac{3}{8} \left[\pi - (\varphi_i^3 +$				
$+ \vartheta_3^i)$			$+\varphi_3^i$)	+ 0.474	+ 0.467		
$\pi - (\theta_i^3 + \theta_3^i)$	2.737 834817	1.816 656621	$-\frac{1}{4} \epsilon_2$	+ 0415	+0.464		
\times $\omega \sqrt{1-e^2}$	_ 0.996 647670	+0.996 647670					
	<u>- 2.728 656691</u>	+1.810 566589	$+\frac{1}{32}\varepsilon_4$	+ 0.019	+ 0.035		
· — δ ₀	0.155 2113	0.686 4808	σ_4	+ 0.908	+ 0.966		
× σ ₀	-2.5734454	+ 1.124 0856		0.000_000011	+ 0.000 000025		
e_2^2	0.003 346711	C.003 346711	$\Delta R(2)$	- 0.000 000010			
$\forall \mu F(1) = R(1)$	- 0.008 612578	+0.003 761989	21((2)	- 0.000 000010	1 0.000 000024		
			4				
	and the same		5/6 e ²	0.005 578	0.005 578		
$3/16e^2$, $5/16e^2$	0.000 12550	0.000 20917	R(2)	0.000 04111	+ 0 000 01190		
$\frac{3/16e^2k^2}{5}$	0.000 008273	0.000 005831	$5/6e^2R(2)$	- 0.000 000229	+ 0.000 000066		
$\frac{5}{16}e^2k^4$	0.000 000091	0.000 000045	$-\Delta R(2)$	+ 10	24		
			$\forall \mu F(3) = R(3)$	- 0.000 000219	+0.000 000042		

				1	
R(0)	-2.728 656691	+1.810 566589	6. П	оверочный расче	ет для B ₃ , L ₃
R(1)	- 0.008 612578	+0.003 761989	D	38°40′27″.310	
R(2)	- 41109	+ 11897	B_3		
R(3)	_ 219	+ 42	lgsinB ₃	9.795 80489	9.795 80489
$\nabla L_{1.3}, \ \nabla L_{2.3}$	_2.737 310597	+1.814340517	$\lg \tau_{i3}$	0.003 32312	0.079 26984
$L_1+2\pi, L_2$	+ 6.927 402876	+2.375750387	$\lg \sin \varphi_3^l$	9.799 12801	9.875 07473
$L_i^{(1)}$	+ 4.190 092279	+4.190090904	φ_3^l	39°01′38″.585	48°35′32″.613
$w_L^{(1)}$	+ 0.000 001375	+ 0".2836	$\begin{vmatrix} \varphi_i^3 \\ 180^\circ - (\varphi_i^3 + \varphi_3^i) \end{vmatrix}$	68°34′03″.855 72°24′17″.560	60°02′46″.239 71°21′41″.148
w _L	- 0.000 001070	0.2000		A ASSESSMENT OF THE	A TOP TO SERVE OF THE SERVE OF
			$\begin{array}{c} \pi - (\varphi_i^3 + \varphi_3^i) \\ \times \end{array}$	1.263 703511 - 0.122 8226	1.245 491913 + 0.551 1730
$\lg v_{i3} V_3 V_{\overline{1-e^2}}$	9.09 060 n	9.74 319	8		
$-\lg \cos B_3$	9.89 239	9.89 239			+ 0.686 4815
$lgsinA'_{3i}$	9.19 921 n	9.85 080	lgtgφ ⁱ ₃	9.908 79359	0.054 60302
A_{3i}	189°06′09″	134°49′32″	$\lg p_{i3}$	9.090 73637	9.742 74631
			$lgtg\theta_3^i$	8.999 52996	9.797 34933
$lgtgA'_{3i}$	9.20 471	0.00 264 n	θ_3^i	5°42′16″.044	32°05′33″.248
$-\lg V_3^2$	- 0.00 178	- 0.00 178	ϑ_i^3	17°25′44″.946	43'49'14".183
$-\lg\cos B_3$	9.89 239	<u>- 9.89 239</u>	$180^{\circ} - (\vartheta_i^3 + \vartheta_3^i)$	156°51′59″.010	104°05′12″.569
$\lg \frac{\partial L_3^i}{\partial B_3} = \lg a_{i3}$	9.31 054	0.10 847 n	π — $(\vartheta_i^3 + \vartheta_3^i)$	2.737 835020	1.816 657 800
	+ 0.20443	-1.2837	$\omega\sqrt{1+e^2}$	_ 0.996 647670	+ 0.996 647670
$b = a_{1.3} - a_{2.3}$	+ 1.4881		$\forall \mu F(0) = R(0)$	- 2.728 656894	+ 1.810 567 764
			- 8	+ 0.155 2114	0.686 4815
1.4881 àB	+0''.2836=0		σ ₀	- 2.573 4455	+ 1.1240863
$\delta B_3^{(1)}$	- 0.000 000924	— 0".1905	$e^2/2$	0.003 346711	0.003 346711
$B_3^{(1)}$		38°40′27″.500	$\forall \mu F(1) = R(1)$	- 0.008 612576	+ 0.003 761991
$B_3^{(2)}$		38°40′27″.310	R(0)	-2.728 656894	+ 1.810 567764
a_{i3}	+ 0.20443	— 1.2837	R(1)	- 0.008 612576	+ 0.003 761 991
\times $\delta B_3^{(1)}$	- 0 000 000924	_0.000000924	R(2)	- 41109	+ 11897
$\delta L_{i}^{(1)}$	0.000 0 00189	+0.000001186	R(3)	219	+ 42
(1)	4.190 09 2279	4.190 090 904	$\Delta L_{\frac{1}{3}}^{(2)}, \Delta L_{\frac{2}{3}}^{(2)}$	— 2.737 310798	+ 1.814 341694
$L_{\frac{i}{3}}^{i}$		1.100 030 304	$L_1+2\pi$, L_2	+6.927 402876	+ 2.375 750387
Li 3	4.190 092 090	4 190 092 090	$L_{i}^{(2)}$	4.190 092078	4.190 092 081
		240°04′28″533	$w_L^{(2)}$	+ 0.000 000003	+ 0".0006
			L_3	4.190 092 080	240°04′28″.531

Приложение 5 Решение прямой выравненнолучевой засечки (второй способ)

1 Meyon	ные данные	$\alpha_{1.2}$	44°58′14″	$\log \cos \delta \gamma_{1.2}$	9.99 992
1. Исході	ные данные	\pm $\delta \alpha_{1,2}$	16°01′22″	$-\lg\cos\gamma_{1,2}$	9.19 877
B_1	67°28′52″.763	α_1	60°59′36″	lg ctg δσ _{1,2}	9.68 198
L_1	34°54′39″.412	a_2	28°56′52″	lg tg σ _{i.3}	0.48 313
	0.644 217568				
$A_{1.3}$	341°13′15″.376	α_2	28°56′52″	σ _{i3}	71°48′06″
	file of	$+$ $A_{2.3}$	53°05′35″	± δσ _{i3}	0°33′08″
B_2	46°12′34″.548	α_1	60°59′36″	σ _{1.3}	72°21′14″
L_2	136°07′13″.693	$-A_{1.3}$	341°13′15″	0 =	1.262 8136
=	2.375 750387	γ1	82°02′27″	$\sigma_{2.3}$	71°14′58″
$A_{2.3}$	53°05′34″ .7 27	γ2	79°46′21″		1.243 5374
		$\frac{1}{2}(\gamma_1+\gamma_2)=\gamma_{1\cdot 2}$	80°54′24″		
2. Вычисл	ение $\sigma_{1 3}, \ \sigma_{2.3}$	$\frac{1}{2}(\gamma_1 - \gamma_2) = \gamma_1 \cdot 2$	1°08′03″	$\log \sin \gamma_1$	9.99 305
				$\lg \sin \sigma_{2.3}$	9.97 632
$90^{\circ}-B_2=\Theta_2$	43°47′25″	$\lg \sin \Theta_1$	9.58 318	$\lg \sin \gamma_2$	9.99 580
$90^{\circ}-B_1=\Theta_1$	22°31′07″	$\lg \sin \alpha_2$	9.68 486	$-$ lg sin $\sigma_{1,3}$	9.97 907
$\frac{1}{2}(\Theta_2 + \Theta_1) =$		$\lg\sin\Theta_2$	9.84 012	$lg n_1$	0.01 673
$\xi = \theta_{1.2}$	33°09′16″	$ \log \sin \alpha_1$	9.94 179	$\log \sin \sigma_{1.2}$	9.89 269
$\frac{1}{2}(\Theta_2 - \Theta_1) =$		$\lg m_1$	9.89 832	$\log n_2$	0.01 673
$=\delta\Theta_{1.2}$	10°38′09″	$\lg \sin \Delta L_{1.2}$	9.99 437	lg sin γ ₃	9.90 942
$\Delta L_{1.2}$	99°12′34″	1g m ₂	9.89 833	γ3	54°16′00″
$\frac{1}{2} \Delta L_{1.2} =$		$lg \sin \sigma_{1.2}$	9.89 269	γ_2	82°02′27″
$=\delta L_{1.2}$	49°36′17″	$\sigma_{1.2}$	51°21′30″	γ1	79°46′21″
		$\frac{1}{2}\sigma_{1} = \delta\sigma_{1}$	25°40′45″	2	216°04′48″
g $\sin \delta \Theta_{1,2}$	9.26 615	$\frac{1}{2}\sigma_{1,2} = \delta\sigma_{1,2}$	25-40-45	$\sum_{i=1}^{S} \gamma_i$	
$-\lg\sin\theta_{1,2}$	- 9.73 788			ε	36°04′48″
$\log \operatorname{ctg} \delta L_{1.2}$	9.92 989				文化
$\lg \lg \delta \alpha_{1.2}$	9.45 816	-lg sin δγ _{1.2}	8.29 653		
		7-			0
$\log \cos \delta \Theta_{1.2}$	9.99 248	$\log \sin \gamma_{1.2}$	9.99 451	the state of the state of	
$-\lg\cos\Theta_{1.2}$	-9.92 283	lg tg δσ _{1.2}	9.68 198		
$\lg \operatorname{ctg} \delta L_{1.2}$	9.92 989	lg tg δσ _{i3}	7.98 400		
$- \lg \lg \alpha_{1:2}$	9.99 954				

		And the second	Maria Para de Caración de Cara		
3. Расчет-	величин v_{i3} , k_{i3}^3 ,	τ_{i3}, p_{i3}	1. /	1.000 000000	1.000 000000
	$Q_{i3}, \varphi_{i}^{3}, \vartheta_{i}^{3}, v_{i3} \nu_{i3}$		*) $c_{02} k^2$	0.004 943826	0.003 484736
				0.000 030551	0.000 015179
$\lg \sin A_{i3}$	9.507 74760 n	9.902 87881	$c_{06} k^6$	196	68
$\log \cos B_i$	9.583 18128	9.840 12007	$c_{08} k^8$	1	0
$-\lg V_i$	- 9.99 8 54166	-9.998 54166	C_0^i	+1.004 974574	+1.003 499983
$-\lg\sqrt{1-e^2}$	-0.000 21452	_0.000 69961			0.001.740000
1g v _{i3}	9.092 17270 n	9.743 75761	$c_{22}k^2$	-0.002 471913	-0.001 742368
$\lg v_{i3}^2$	8.184 34540	9.487 51522	$c_{24} k^4$	-0.000 020368	-0.000 010119
$\log e^2$	7.825 64818	7.825 64818	c_{26} k^6	147	- 51
$1ge^2 v_{i3}^2$	6.009 99358	7 313 16340	$c_{28}k^8$		0
			C_2^i	-0.002 492429	-0.001 752538
e²	0.006 693422	0.006 693422		1, 10	
€2 y2	0.000 102328	0.002 056664	$c_{44} k^4$	+0.000 002546	-0.000 001265
\vee^2	0.015 28781	0.307 26650	$c_{46} k^6$	+ 29	+ 10
e^2-e^2 v^2	0.006 591094	0.004 636758	$c_{48} k^8$	+ 0	+ 0
$1-e^2 v^2$	0.999 89767	9.997 94334	C_4^i	+0.000 002575	+0.000 001275
- 1-v ²	0.984 71219	0 692 73350			
$\int \lg (e^2 - e^2 v^2)$	7.818 95750	7.666 21443	$c_{66} k^6$	-0.000 000033	-0.000 000012
$\lim_{n \to \infty} \left(1 - e^2 v^2 \right)$	9.999 95556	9.999 10588	$-c_{68}k^8$	0	0
	9.993 30932	9.840 56619	C_6^i	-0.000 000033	-0.000 000012
$\lg k^2$	7.819 00194	7.667 10855		7 252 6136	
$\lg \tau^2$	0.006 64624	0.158 53969	$C_{\underline{\imath}}^{\underline{\imath}}:C_{0}^{\underline{\imath}}=D_{\underline{\imath}}^{\underline{\imath}}$	-0.002 480092	-0.001 746426
k ²	0.006 591768	0.004 646314	$C^i_4:C^i_0=D^i_4$	+0.000 002562	+0.000 001271
k^4	0.000 043451	0.000 021588	$C_6^i: C_0^i = D_6^i$	-0.000 000033	-0.000 000012
k6	0.000 000286	0.000 000100			
	0.000 000019	0.000 000005	$lg (1-e^2) a$	6.8017 84509	6.8017 84509
	Black St.		lg Vi	0.0000 22221	0.0004 47059
$\lg \frac{1}{\tau} = \lg \sin B_0$	9.996 67688	9.920 73016	$\lg \overset{0}{\overset{\circ}{C_0}}$	0.0021 55074	
B_0	82° 5 5′16″.038	56°25′30″.272	1g Q _i 3	6.8039 61804	6.8037 48937
$\lg \cos B_0 = \lg p$	9.090 73637	9.742 74631			
p	0.123 23565	0.553 02697	$\frac{v}{ v } = \omega$	-1	+1
		1	11		

			1	-	
p_{i3}	0.123 23565	0.553 02697		+0.418	-0.243
$\omega \sqrt{1-e^2}$	-0.996 64767	+0.996 64767	$-\frac{1}{\sin 4\varphi_{L}^{3}}$	-0.997	-0.868
ν ₁₃ μ ₁₃	-0.122 8226	+0.551 1730	一种工程的人的一种"一种"。	-1.65705	-1.85711
	HALL THE THE		ε ₄ (00)	+0.579	+1.111
$\log \sin B_i$	9.965 55668	9.858 46269	$D_2 \epsilon_2^{(00)}$	+0.004 1096	+0.003 2444
1g τ _{i3}	0.003 32312	0.079 26984	$D_4 \epsilon_4^{(00)}$	+ 15	+ 14
$\lg\sin\varphi_i^3$	9.968 87980	9.937 73253	$\delta \varphi_{i}^{(00)}$	+0.004 1111	+0.003 2458
φ_t^3	68°34′03″.855	60°02′46″.239			
2	Kan da A		$\cos 2\varphi_3^i$	+0.21 420	-0.12 235
$+$ lg tg φ_i^3	0.406 11008	0.239 36934	13	-0.908	
$\lg p_{i3}$	9.090 73637	9.742 74631	$-2D_2\cos 2\varphi_3^l$	+0.0010625	0.000 4274
$\log \log \vartheta_i^3$	9.496 84645	9.982 11565	4 13	+ 93	
ϑ_l^3	17°25′44″.946	43°49′14″.183	$1 - x = x_1$	$+0.001\ 0718$ $+0.998\ 9282$	
4. Первое	приближение для	$S_{i3}, B_3, L_3.$	$\delta \varphi_i^{(00)} : \varkappa_1 = \Delta \varphi_i^{(00)}$		
а) Вычи	сление $w_B^{(0)}$		(00) φ <i>i</i>	+0.677 4641	+0.846 7253
B_{ik} —с чертеж	a 75°, 72°, 62°, 46°	49°, 53°, 50°, 43°	$\varphi_{i}^{(0)} \approx \varphi_{i3}$	+0.681 5796	+0.849 9697
R_{i1}, R_{i2}	6397, 6397	6381, 6384	3 -	+39°03′05″.9	+48°41′58″.8
R_{i3} , R_{i4}	6390, 6378	6383, 6377			
$\overline{R}_{i3} = \frac{1}{4} \sum_{\kappa} R_{i\kappa}$	6390500 м	6381 300 м	$\sin 2\varphi_3^l$	+0.97 852	+0.99 167
× σ _{i3}	1.262 8136	1.243 5374	$\sin 4\varphi_3^i$	+0.404	
$s_{i3}^{(0)}$	80700 010 M	7935 385 M	$\varepsilon_2^{(0)}$	+1.65 878	+1.85 689
$\lg s_{i3}^{(0)}$	6.906 87407	6.899 56800	$\varepsilon_4^{(0)}$	+0.593	+1.123
$-$ lg Q_{i3}	6.803 96180	6.803 74894	$D_2arepsilon_2^{(0)}$	+0.004 1139	+0.003 2429
$\lg \widetilde{\sigma}_{i3}^{(0)}$	0.102 91227	0.095 81906	$+ D_4 \varepsilon_4^{(0)}$	+ 15	+ 14
$-\widetilde{\sigma}_{i3}^{(0)}$	-1.267 3958	—1.246 8639	$\Delta arphi_{i}^{(0)} pprox \Delta arphi_{i}^{(00)}$	+0.004 1154	+0.003 2443
$+\frac{-\overset{\sim}{\sigma_{i3}^{(0)}}}{\pi-\varphi_{i}^{3}}$	+1.944 8599	+2.0935892	3		
$\varphi_3^{(00)} \approx \varphi_3^l$	+0.677 4641	+0.8467253	$\lg \sin \varphi_{i}^{(0)}$	9.799 354	9.875 791
	+38°48′57″	+48°30′50″	- lg τ _{i3}	0.003 323	0.079 270
			$\lg \sin B_{i}^{(0)}$	9.796 031	9.796 521
$-\left[\begin{array}{c}\sin 2\varphi_3^i\\+\\\sin 2\varphi_i^3\end{array}\right.$	+0.97 679	+0.99 249	$B_{i}^{(0)}$	38°41′53″.3	38°45′00″.0
$\int_{\sin 2\varphi_i^3}$	+0.68 026	+0.86 522	$w_B^{(0)}$	-0.000 9051	—3′06″. 7

б) Вычи	сление w _L ⁽⁰⁾		$3/4 e^2$	0.005 020	0.005 020
π - φ_t^3	1.944 8599	2.093 5892	× R(1)	_0.008 612	+0.003 760
$-\varphi_3^l$	0.681 5795	0.849 9696	$3/4 e^2 R(1)$	-0.000 0432	+0.000 0189
	-1.263 2804	1.243 6196	$-\Delta R$ (1)	+ 21	_ 70
×	-0.122 8226	+0.551 1730	νμ F(2) = R(2)	-0.000 0411	+0.000 0119
8	-0.155 159	+0.685 449			11.11.17
			R (0)	-2.7285719	+1.808 8730
$\lg \lg \varphi_3^l$	9.909 169	0.056 243	$R_{i}(1)$	-0.0086124	
$\lg p_{i3}$	9.090 736	9.742 746	R (2)		+0.000 0119
$\lg \lg \vartheta_3^i$	8.999 905	9.798 989	$\Delta L_{1.3}^{(0)}, \ \Delta L_{2.3}^{(0)}$	-2.737 2254	+1.812 6447
ϑ_3^t	5°42′33″.7	32°11′24″.0	$L_1+2\pi$, L_2	+6.927 4029	+2.375 7504
ϑ_3^i	17°25′44″.9	43°49′14″.2	$L_{i}^{(0)}$	+4.190 1775	+4.188 3951
$180^{\circ} = (\vartheta_i^3 + \vartheta_3^i)$	156°51′41″.4	103°59′21″.8	$w_L^{(0)}$	+0.001 7824	+ 6'07".65
$\pi - (\vartheta_i^3 + \vartheta_3^i)$	2.737 7497	1.814 9573			
$\omega \sqrt{1-e^2}$	0.996 64767	+0.996 64767	в) Вычисле	ние велич	ин $\frac{\partial B_3^i}{\partial s_{i3}}$, $\frac{\partial L_3^i}{\partial s_{i3}}$;
νμF(0)=R(0)	-2.728 5719	+1.808 8730		$\delta L_{i_{3}}^{(0)}; \ s_{i_{3}}^{(1)}$	
- 8	+0.155 159	_0.685 449	3	3 ,	
σ ₀	-2.573 413	+1.123 424	$B_i^{(0)} \approx B_3^i$	38°41′53″.3	38°45′00″.0
$e^2/2$	0.003 3467	0.003 3467			
νμF(1)=R(1)	-0.008 6124	+0.003 7598	$lg \sqrt{1-e^2}$	9.99 854	9.99 854
			1g v ₁₃	9.09 217 n	9.74 376
3/16 e ²	0.001 255	0.001 255	$\lg V_3^i$	0.00 089	0.00 089
$3/16 e^2 k^2$	0.000 00827	0.000 00583	$-\lg \cos B_3^i$	-9.89234	-9.89 203
$\varepsilon_2^{(0)}$	—1.657	-1.858	$\lg \sin A_{3i}$	9.19 926 n	9.85 116
			A'_{3i}	189°06′13″	134°46′42″
$-\frac{1}{2} \varepsilon_2^{(0)}$	+0.828	+0.929	$\log \cos A_{3i}'$	9.99 450 n	9.84 780 n
$\pi - (\varphi_i^3 + \varphi_3^i)$	+1.263	+1.244	$+$ $\lg(1)_3^i$	8.51 093	8.51 093
σ_2	+2.091	+2.173			43
× 3/16 e ² k ² νμ	-0.000 00102	+0.00000321	$\lg \frac{\partial B_3^i}{\partial s_{i3}} \frac{ce\kappa}{\kappa M}$	1.50 543 n	1.35 873 n
ΔR (1)	-0.000 0021	+0.000 0070	$a_{i3} = \frac{\partial B_3^i}{\partial s_{i3}}$	-32.021	-22.842
4					

$\sin A_{3i}'$	9.19 926 n	9.85 116	5.	Второе прибли	жение.	
$\lg{(2)_3^i}$	8.50 915	8.50 915				
$-\lg \cos B_3^i$	<u>-9.89 234</u>	-9.89 203	а) Выч	исление т	$v_B^{(1)}$	
	0.81 607 n	1.46 828	$\log s_{i3}^{(1)}$	6.907 017684	6.900 219607	
$b_{i3} = \frac{\partial L_3^i}{\partial s_{i3}}$	-6.547	+29.395	$ \log Q_{i3}$	6.803 961804	6.803 748937	
13			$\log \widetilde{\sigma}_{i3}^{(1)}$	0.103 055880	0.096 470670	
$\left(\frac{\partial B_3^1}{\partial s_{1,3}} \delta s_{1,3}^{(0)} - \right)$	$-rac{\partial B_3^2}{\partial s_{2,3}} \delta s_{2,3}^{(0)} + w_B^{(0)}$	=0	$-\overset{\sim}{\sigma}_{i3}$	-1.267 814983	-1.248 736109	
1.0	2.0		$\pi - \varphi_i^3$ (10) φ_i^2	+1.944 859873	+2.093 589153	
$\left(\frac{1}{\partial s_{1,3}}, \frac{\partial s_{1,3}}{\partial s_{1,3}}\right)$	$-rac{\partial L_{3}^{2}}{\partial s_{2.3}}\delta s_{2.3}^{(0)}+w_{L}^{(0)}$	7=0	φ_3^{i}	+0.677 044890	+0.844 853044	
	$+22.842$ δ $s_{2.3}^{(0)}=$		$\lg \sin B_3^{(1)}$	9.795 807	9.795 807	
$-6.547 \delta s_{1.3}^{(0)}$	$-29.395 \delta s_{2.3}^{(0)} =$	- 367".7	$\lg \tau_{l3}$	0.003 323	0.079 270	
			$\lg \sin \varphi_i^{(1)}$	9.799 130	0.875 077	
	090.804; $\Delta_1 = +$ $\Delta_2 = +12996.45$	2910.96;	$\varphi_{i}^{(1)} \approx \varphi_{3}^{i}$	39°01′39.2	48°35′33″.3	
$\delta s_{1.3}^{(0)} = +2.66$	86 км; $\delta s_{2.3}^{(0)} = +1$	11.9145 км.				
$\delta B_1^{(0)} = -85''$.5; $\delta B_{\frac{2}{3}}^{(0)} = -272''$.2.	$\int \sin 2\varphi_3^l$	+0.978347	+0.992 150	
$\delta L_{\frac{1}{3}}^{(0)} = -17''$	471; $\delta L_{\frac{3}{3}}^{(0)} = +350$)".227.	$-\left[\begin{array}{c}\sin 2\varphi_3^l\\+\\\sin 2\varphi_l^3\end{array}\right]$	+0.680 267	+0.865 218	
			$\int \sin 4\varphi_3^i$	+0.4050	-0.2482	
$s_{i3}^{(0)}$	8070 010 м	7.935 385 м	$-\left[\begin{array}{c} \sin 4\varphi_3^i \\ + \\ \sin 4\varphi_i^3 \end{array}\right]$	_0.9972	-0.8676	
$\delta s_{i3}^{(0)}$	+2 669 м	+11 915 м	$\int \sin 6\varphi_3^i$	-0.81	-0.93	
$s_{i3}^{(1)}$	8.072 679 M	7.947 300 M	$ \frac{1}{\sin 6\varphi_i^3}$	+0.78	+0.00	
			$\varepsilon_2^{(1)}$	-1.658614	— 1.857 368	
$B_{\boldsymbol{i}}^{(0)}$	38°41′53″.3	38°45′00″.0	$\epsilon_4^{(1)}$	+0.5922	+1.1158	
$B_{i}^{(0)}$ $B_{i}^{(0)}$	<u>-1' 25".5</u>	4′32″.2	ε ₆ (1)	+0.03	÷0.93	
$B_3^{(1)}$	38° 40′ 27″.8	38°40′27″.8	$D_2arepsilon_2^{(1)}$	+0,004 113515	+0.003 243756	
			$D_4 \epsilon_4^{(1)}$	+0.000 001517	+0.000 001418	
$L_{i}^{(0)}$	4.190 1775	4.1883951	$D_6 \epsilon_6^{(1)}$	1	11	
$\delta L_{i}^{(0)}$	0.000 0847	+0 001 6979	$\Delta \varphi_i^{(1)}$	+0.004 115031	+0.003 245163	
$L_3^{(1)}$	4.190 0928	4.190 0930	$\varphi_{i}^{(10)}$	+0.677 044890	+0.844 85 3044	
			(1)	+0.681159921	+0.848 098207	
			O .	39°01′39″.319	48°35′32″.813	

			продони	ение при	
$\sin 2\varphi_3^i$	+0.978 348	+0.992 150	$3/16 e^2$, $5/16 e^2$	0.000 12550	0.000 20917
$\epsilon_2^{(1)}$	-1.658 615	1.857 368	$3/16 e^2 k^2$	0.000 008273	0.000 005831
$D_2 \epsilon_2^{(1)}$	+0.004 113518	+0.003 243756	$5/16 e^2 k^4$	0.000 000091	0.000 000045
$\Delta \varphi_{i}^{(1)}$	+0.004 115034	+0.003 245163		4 5 7 4	
$\varphi_{i_3}^{(1)} \approx \varphi_3^i$	0.681 159 924	+0.848 098207	$-\frac{1}{2} \varepsilon_2^{(1)}$	+0.8293	+0.9287
	39°01′39″.320	48°35′32″.813	π — $(\varphi_i^3 + \varphi_3^i)$	+1.2637	+1.2455
$1 g s_i n \varphi_i^{(1)}$	9.799 12992	9.875 07510		+2.0930	+2.1742
$-\lg \tau_{i3}$	0.003 32312	0.079 26984	$\frac{\times}{3/16} e^2 k^2 $	-0.000 001016	+0.000 003214
$\lg \sin B_i^{(1)}$	9.795 80680	9.795 80526	ΔR (1)	0.000 002128	+0.000 006988
$B_{i}^{(1)}$	38°40′28″.038	38°40′27″.452			
$w_B^{(1)}$	+0.000 002841	+0".586		0.005 0200	0.005 0200
			\times $R(1)$	-0.008 61258	+0.003 76199
			$3/4 e^2 R(1)$	-0.000 043235	+9.000 018885
б) Вы	числение w_L^{\prime}		$-\Delta R$ (1)	+0.000 002126	
π — φ_i^3	1.944 8599	2.093 5892	νμ FR (2)=R (2)	-0.000 041109	+0.000 011897
$-\varphi_3^{\boldsymbol{i}}$	0.681 1599	-0.848 0982		,11	
$\pi - (\varphi_i^3 + \varphi_3^i)$	1.263 7000		$3/8[\pi - (\varphi_i^3 + \varphi_3^i)]$	+0.474	+0.467
\times $^{\lambda}h$	-0.122 8226	+0.551 1730	$-1/4 \epsilon_2^{(1)}$	+0.415	+0.464
ð i	-0.155 2109 9.908 79675	+0.686 4810 0.054 60387		+0.019	+0.035
$\lg \lg \varphi_3^I$	9.090 73637	9.742 74631	+ 32 °4		- C-1-15
$\lg p_i$	9.999 53312	9.797 35018	\times σ_4	+0.908	÷0.966
$\lg \lg \vartheta_3^i$			5/16 e2 k4 yp	-0.000 000011	
θ_3^i	5°42′16″.192	32°05′33″.430	-1((-)	-0.000 000010	+0.000 000024
ϑ_i^3	17°25′44″.946 156°51′58″.862	43°49′14″.183 104°05′12″.387			
$180^{\circ} - (\vartheta_i^3 + \vartheta_3^i)$		4.816 656917		0.005 578	0.005 578
$\pi - (\theta_i^3 + \theta_3^i) \times$	-0.996 647 670	+0.996 647670	$\times 5/6 e^2$ $R (2)$	0.000 04111	+0.000 01190
$\omega \sqrt{1-e^2}$	— 2.728 656180	+1.810 566884	$5/6 e^2 R(2)$	0.000,000000	+0.000 000066
$\forall \mu F(0) = R(0)$	+0.155 2109	-0.686 4810	$-\Delta R (2)$	-0.000 000229 + 10	_ 24
$-\delta$ σ_0	-2.573 4453	+1.124 0859	υμ FR(3) = R(3)	-0.000 000219	+0.000 000 042
$\stackrel{\times}{\sim} e^{2/2}$	0.003 346711	0.003 346711	(a) I((0) = I((0)	-0.000 000219	
$\forall \mu F(1) = R(1)$	-0.008 612578	+0.003 764991			
				* - 2	
			2 + (3 +) (t)		

	Продолжение приложения 5						
R (0)	$-2.728\ 656180$	+1.810 566884	$\delta s_{1.3}^{(1)} = +22.669$ $\delta s_{2.3}^{(1)} = +6.120$				
R (1)	-0.008 612578	+0.003 761991	$\delta B_1^{(1)} = -0''.726; \delta B_2^{(1)} = -0''.140$				
R 2)	_ 41109	+ 11897	$\delta L_{\frac{1}{3}}^{(1)} = -0''.1484 \delta L_{\frac{1}{2}}^{(1)} = +0''.1796$				
R (3)	219	+ 42		3			
$\nabla L_{1.3}^{(1)}, \Delta L_{2.3}^{(1)}$	-2.737 310086	+1.814 340814	$s_{i3}^{(1)}$	8 072 679.0	7.947 300.0		
$L_1 + 2\pi, L_2$	+6.927 402876	+3.375 750387	$\delta s_{t3}^{(1)}$	+22.7	+6.1		
$L_i^{(1)}$	4.190 092790	4.190 091 201	$s_{i3}^{(2)}$	8 072 701.7	7 947 306.1		
$w_L^{(1)}$	+0.000 001591	+ 0".328	$B_i^{(1)}$	38°40′28″.038	38°40′27″.452		
в) Вычисление величин $\dfrac{\partial B_3^i}{\partial s_{i3}}, \dfrac{\partial L_3^i}{\partial s_{i3}},$		$\delta B_{i}^{(1)}$	-0".726	-0.140			
(1)	$\delta L_3^{(1)}, s_{i3}^{(2)},$	1	$B_3^{(2)}$	38°40′27″.312	38°40′27″.312		
$\lg v_{i3} V_3^t$.							
$\cdot \sqrt{1-e^2}$	9.09 160 n	9.74 319	$L_{i}^{(1)}$	4.190 092790	4.190 091201		
$-\frac{1}{\log \cos B_3^i}$	9.89 239	9.89 239	$\delta L_i^{(1)}$	_0.000 000719	+0.000 000871		
$\lg \sin A_{3i}'$	9.19 921 n	9.85 080	$\begin{array}{c} \delta L_i^{(1)} \\ 3 \\ L_i^{(2)} \end{array}$	4.190 092071	4.190 09272		
$A_{3i}^{'}$	189°06′09″	134°49′32″	3		240°04′28″. 529		
$\log \cos A'_{3l}$	9.99 450 n	9.84 816 <i>n</i>	6. По	верочный расч	ет		
	9.99 450 <i>n</i> 8.51 093	9.84 816 <i>n</i> 8.51 093		в <mark>ерочный расч</mark> пределен			
+					ие $w_B^{(2)}$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$	8.51 093 0.50 543 n	8.51 093 0.35 909 <i>n</i>	a) O	пределен	ие $w_B^{(2)}$		
+	8.51 093 0.50 543 n	8.51 093	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}} \cdot \\ \lg \widetilde{\sigma_{i3}^{(2)}}$	пределен 6.907 018905	ие $w_B^{(2)}$ 6.900 219941		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$	8.51 093 0.50 543 n	8.51 093 0.35 909 <i>n</i>	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg \widetilde{\sigma}_{i3}^{(2)}}{-\widetilde{\sigma}_{i3}^{(2)}}$	пределен 6.907 018905 6.803 961804	ие $w_B^{(2)}$ 6.900 219941 6.803 748937		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$	8.51 093 0.50 543 n -3.2021 9.19 921 n	8.51 093 0.35 909 n -2.2860 9.85 080	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg \widetilde{\sigma}_{i3}^{(2)}}{-\widetilde{\sigma}_{i3}^{(2)}}$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873	$w \in w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$ $\lg \sin A_{3i}^{'}$ $\lg (2)_{3}^{i}$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}} \cdot \\ \lg \widetilde{\sigma_{i3}^{(2)}}$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547	$w \in w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$		
$+ \lg (1)_3^i$ $\lg \frac{\partial B_3^i}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_3^i}{\partial s_{i3}}$ $\lg \sin A_{3i}^i$ $\lg (2)_3^i$ $- \lg \cos B_3^i$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915 9.89 239	8.51 093 0.35 909 n -2.2860 9.85 080	$\begin{array}{c} \text{a) O} \\ -\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}} \\ -\frac{\lg Q_{i3}}{\lg \widetilde{\sigma_{i3}^{(2)}}} \\ -\frac{\widetilde{\sigma_{i3}^{(2)}}}{2 \operatorname{dist}} \\ -\frac{\widetilde{\sigma_{i3}^{(2)}}}{2 \operatorname{dist}} \\ +\frac{(20)}{3} \\ +\frac{\Delta \varphi_{i_{3}}^{(2)}}{3} \end{array}$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873	$w \in w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$ $\lg \sin A_{3i}^{'}$ $\lg (2)_{3}^{i}$ $- \lg \cos B_{3}^{i}$ $\lg \frac{\partial L_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915 9.89 239 7.81 597 n	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915 9.89 239 8.46 756	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg Q_{i3}}{\lg \widetilde{\sigma}_{i3}^{(2)}}$ $-\frac{\widetilde{\sigma}_{i3}^{(2)}}{\sigma_{i3}^{(20)}}$ $\frac{\pi - \varphi_{i}^{3}}{\varphi_{i}^{(20)}}$ $+$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873 0.677 041326	$we \ w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$ $0.844 \ 852084$		
$+ \lg (1)_3^i$ $\lg \frac{\partial B_3^i}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_3^i}{\partial s_{i3}}$ $\lg \sin A_{3i}^i$ $\lg (2)_3^i$ $- \lg \cos B_3^i$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915 9.89 239 7.81 597 n	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915 9.89 239	$\begin{array}{c} \text{a) O} \\ -\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}} \\ -\frac{\lg Q_{i3}}{\lg \widetilde{\sigma_{i3}^{(2)}}} \\ -\frac{\widetilde{\sigma_{i3}^{(2)}}}{2 \operatorname{dist}} \\ -\frac{\widetilde{\sigma_{i3}^{(2)}}}{2 \operatorname{dist}} \\ +\frac{(20)}{3} \\ +\frac{\Delta \varphi_{i_{3}}^{(2)}}{3} \end{array}$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873 0.677 041326 +0.004 115034	$w \in w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$ $0.844 \ 852084$ $+0.003 \ 245163$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$ $\lg \sin A_{3i}^{'}$ $\lg (2)_{3}^{i}$ $- \lg \cos B_{3}^{i}$ $\lg \frac{\partial L_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $b_{i3} = \frac{\partial L_{3}^{i}}{\partial s_{i3}}$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915 9.89 239 7.81 597 n	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915 9.89 239 8.46 756 +2.9347	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg Q_{i3}}{\lg \sigma_{i3}^{(2)}}$ $-\frac{\sigma_{i3}^{(2)}}{\sigma_{i3}^{(2)}}$ $\frac{\pi - \varphi_{i}^{3}}{\varphi_{i}^{(20)}}$ $+\frac{\Delta \varphi_{i}^{(2)}}{3} = \varphi_{3}^{i}$ $=$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873 0.677 041326 +0.004 115034 +681 156360 39°01′38″.583	$we = w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$ $0.844 \ 852084$ $+0.003 \ 245163$ $+0.848 \ 097247$ $48°35'32''.614$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$ $\lg \sin A_{3i}^{'}$ $\lg (2)_{3}^{i}$ $- \lg \cos B_{3}^{i}$ $\lg \frac{\partial L_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $b_{i3} = \frac{\partial L_{3}^{i}}{\partial s_{i3}}$ $3.2021 \ \delta s_{1.3}^{(1)}$	8.51 093 0.50 543 n -3.2021 9.19 921 n 8.50 915 9.89 239 7.81 597 n 0.6546	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915 9.89 239 8.46 756 +2.9347 ".586=0	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg Q_{i3}}{\lg \sigma_{i3}^{(2)}}$ $-\frac{\sigma_{i3}^{(2)}}{\sigma_{i3}^{(2)}}$ $\frac{\pi - \varphi_{i}^{3}}{\varphi_{i}^{(20)}}$ $+\frac{\Delta \varphi_{i}^{(2)}}{3} = \varphi_{3}^{i}$ $=$ $\lg \sin \varphi_{i}^{(2)}$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873 0.677 041326 +0.004 115034 +681 156360 39°01′38″.583	$we \ w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$ $0.844 \ 852084$ $+0.003 \ 245163$ $+0.848 \ 097247$ $48°35'32''.614$		
$+ \lg (1)_{3}^{i}$ $\lg \frac{\partial B_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $a_{i3} = \frac{\partial B_{3}^{i}}{\partial s_{i3}}$ $\lg \sin A_{3i}^{'}$ $\lg (2)_{3}^{i}$ $- \lg \cos B_{3}^{i}$ $\lg \frac{\partial L_{3}^{i}}{\partial s_{i3}} \frac{ce\kappa}{100 \text{ M}}$ $b_{i3} = \frac{\partial L_{3}^{i}}{\partial s_{i3}}$ $3.2021 \delta s_{1.3}^{(1)}$ $-0.6546 \delta s$	$8.51 ext{ } 093$ $0.50 ext{ } 543 ext{ } n$ -3.2021 $9.19 ext{ } 921 ext{ } n$ $8.50 ext{ } 915$ $9.89 ext{ } 239$ $7.81 ext{ } 597 ext{ } n$ 0.6546 $+2.2860 ext{ } \delta s_{2.3}^{(1)} + 0$	8.51 093 0.35 909 n -2.2860 9.85 080 8.50 915 9.89 239 8.46 756 +2.9347 ".586=0 -0".328=0	a) O $-\frac{\lg s_{i3}^{(2)}}{\lg Q_{i3}}$ $-\frac{\lg Q_{i3}}{\lg \sigma_{i3}^{(2)}}$ $-\frac{\sigma_{i3}^{(2)}}{\sigma_{i3}^{(2)}}$ $\frac{\pi - \varphi_{i}^{3}}{\varphi_{i}^{(20)}}$ $+\frac{\Delta \varphi_{i}^{(2)}}{3} = \varphi_{3}^{i}$ $=$	пределен 6.907 018905 6.803 961804 0.103 057101 -1.267818547 +1.944 859873 0.677 041326 +0.004 115034 +681 156360 39°01′38″.583	$we = w_B^{(2)}$ $6.900 \ 219941$ $6.803 \ 748937$ $0.096 \ 471004$ $-1.248 \ 737069$ $+2.093 \ 589153$ $0.844 \ 852084$ $+0.003 \ 245163$ $+0.848 \ 097247$ $48°35'32''.614$		

$B_i^{(2)}$	38°40′27″.312	38°40′27″.312	$\times \frac{\pi - (\vartheta_i^3 + \vartheta_3^i)}{\times}$	2.737 835025	1.816 657799
$w_B^{(2)}$		0".000	$\omega \sqrt{1-e^2}$	_0.996 647670	0.996 647670
			$\forall \mu F(0) = R(0)$	-2.728 656899	+1.810 567763
б) Определение $w_L^{(2)}$			-8	+0.155 2114	0.686_4816
π - φ_1^3	1.944 8599	2.093 5892	σ ₀	-2.573 4455	+1.124 0862
$-\varphi_3^l$	_0.681 1564	-0.848 0972		0.003 346711	0.003 346711
			2		
π — $(\varphi_i^3 + \varphi_3^i)$	1.263 7035	1.245 4920	νμF(1)=R(1)	-0.008612578	+0.003 761992
×	0.122 8226	+0.551 1730		2	
6	-0.155 2114	+0.686 4816	R(0)	-2.728656899	+1.810 567763
			R(1)	-0.008 612578	+0.003 761992
$\lg \lg \varphi_3^i$	9.908 79358	0.054 60302	R (2)	- 41109	+ 11897
$\lg p_{i3}$	9.090 73637	9.742 74631	R (3)	_ 219	
$\lg \lg \vartheta_3^i$	9.999 52995	9.797 34933	$\nabla L_{1.3}^{(2)}, \ \Delta L_{2.3}^{(2)}$	-2.737 310805	+1.814 341692
θ_3^i	5°42′16″.043	32°05′33″.248	$L_1+2\pi$, L_2	+6.927402876	+2.375 750387
ϑ_{i}^{3}	17°25′44″.946	43°49′14″.183	$L_i^{(2)}$	4.190 092071	4.190 092081
$180^{\circ} - (\vartheta_{i}^{3} +$					
$+\vartheta_3^i$)	156°51′59″.011	104°05′12″ 569	$w_L^{(2)}$	-0.000 000010	-0".0021

до $1-3^{\circ}$ среднюю широту $B_{i\kappa}$ каждой такой части и выписали отвечающее $B_{i\kappa}$ значение $R_{i\kappa}$ среднего радиуса кривизны (с точностью до 1 κm). Теперь уже можно было подсчитать искомые начальные значения $s_{i3}^{(0)}$ длин засекающих сторон i3 на сфероиде, приняв

$$s_{i3}^{(0)} = \left(\frac{1}{4} \sum_{\kappa} R_{i\kappa}\right) \sigma_{i3}^{(0)}, \qquad (i=1,2).$$

Последующие вычисления выполнялись так, как это описано в [Дел. 6,Б], причем выяснилось, что несмотря на кажущуюся грубость изложенного выше расчета длин $s_{i3}^{(0)}$ ошибки $\nabla s_{i3}^{(0)}$ этих длин оказались сравнительно малыми:

а)
$$\nabla s_{i3}^{(0)} = -2.7$$
 км при $s_{1.3} = 8072 \cdot 7$ км;

б)
$$\nabla s_{2.3}^{(0)} = -11.9 \text{ км}$$
 при $s_{2.3} = 7947.3 \text{ км}$.

Для нахождения на сфероиде длин $s_{i,3}$ с точностью до 0,2 м и координат B_3 , L_3 с точностью до 0''.001-0''.002 потребовалось два полных приближения (одно-с 6 знаками, другое-с 8-9 знаками) и одно неполное, поверочное приближение.

3. Сопоставляя значения координат B_3 , L_3 определяемой точки 3, найденные обоими способами, убеждаемся в их хорошей сходимости

1-й способ:
$$B_3 = 38^{\circ}40'27'' \cdot 310$$
; $L_3 = 240^{\circ}04'28'' \cdot 531$.

2-й способ:
$$B_3 = 48^{\circ}40'27'' \cdot 312$$
; $L_3 = 240^{\circ}04'28'' \cdot 529$.

Возникающие при этом расхождения не выходят из пределов точности вычисления по 8-значным таблицам логарифмов.

ЛИТЕРАТУРА

- 1. F. W. Bessel, Ueber die Berechnung der geographischen Längen und Breiten aus geodetischen Vermessungen. Astr. Nachr., Bd. 4, № 86, 1826.
 2. Ю. С. Сикорский. Элементы теории эллиптических функций. ОНТИ, 1936.
 3. В. П. Ветчинкин. Новые формулы и таблицы эллиптических интегралов и функций. Изд. ВВА РККА, М., 1935.
 - 4. Ф. А. Слудский. Лекции по высшей геодезии. М., 1894.
- 5. Ф. Н. Красовский. Курс высшей геодезии. Ч. 2, М., 1942. 6. Б. Ф. Крутой. Общие способы решения основных расчетных задач на земном сфероиде (краткое сообщение). Известия ТПИ, т. 118, 1963.