известия

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 136

ОКИСЛЕНИЕ ГИДРОЛИЗНОГО ЛИГНИНА II сообщение ОКИСЛЕНИЕ ПЯТИОКИСЬЮ ВАНАДИЯ

Л. А. ПЕРШИНА, В. Н. КУКСИНА, В. П. ВАСИЛЬЕВА

(Представлена кафедрой органической химии)

При окислении сернокислотного гидролизного лигнина в присутствии окислов и гидратов окислов металлов переменной валентности (сообщ. 1) мы пришли к выводу, что пятиокись ванадия значительно (в 2 с лишним раза) увеличивает выход низкомолекулярных веществ, растворимых в эфире.

Целью настоящей работы является выяснение влияния количества

пятиокиси ванадия на выход эфирорастворимых веществ.

В литературе имеются указания на то, что при окислении гидролизного и других лигнинов наибольшие выходы эфирорастворимых получаются при применении значительных количеств окислителя [1, 2, 3]. Естественно было предположить, что с увеличением количества V_2O_5 выход эфирорастворимых возрастет.

Был поставлен ряд опытов с различным количеством пятиокиси ванадия от 1 до 180% по отношению к лигнину с 30% едкой щелочи,

при гидромодуле 1/10, Т=180; время 4 часа.

Продукты реакции разделены на растворимые в щелочи, эфире

и воде.

Растворимые в эфире вещества представляют собой низкомолекулярные соединения, которые мы разделяли на альдегиды, кислоты и фенолы. Для этого эфирный раствор экстрагировали 10% бисульфитом натрия 2-4 раза. Бисульфитную вытяжку подкисляли H_2SO_4 (1:1) и удаляли SO_2 током углекислого газа, при нагревании на водяной бане в течение 3-х часов. Раствор насыщали хлористым натрием и экстрагировали эфиром 8 раз. Эфирные вытяжки сущили над сернокислым натрием, эфир отгоняли, остаток взвешивали. Для выделения кислой фракции оставшийся после обработки бисульфитом натрия эфирный раствор экстрагировали $80/_0$ раствором $NaHCO_3$ четыре раза, раствор подкисляли серной кислотой и экстрагировали эфиром. Тот же эфирный раствор обрабатывали $50/_0$ едким натрием и аналогично выделяли фенолы.

Количество исходных веществ, выход растворимых в щелочи и эфире, а также результаты их анализа приведены в табл. 1.

Выводы

1. С увеличением количества пятиокиси ванадия уменьшается выход растворимых в щелочи лигниновых кислот.

Таблица 1

№ nn	Количество V_2O_5 в % к лигнину	Продукты реакции									
		растворимые в щелочи			растворимые в эфире						
		колич. от лигнина, ⁰ / ₀	. °/ ₀ C	°/ ₀ H	из фильтра- та в ⁰ / ₀ от лигнина	из I осадка в ⁰ / ₀ от лигнина	из II осад- ка в ⁰ / ₀ от лигнина	всего	бисульфит- ная фрак- ция, 0 / ₀	бикарбо- натная фракция, ⁰ / ₀	щелочная фракция, ⁰ / ₀
1	180,0	0	1 1	_	3,5	6,2	0	9,7	13,2		
2	90,0	2,0			3,3	1,0	0	4,3	10,0	5,0	10,0
3	50,0	3,3	61,5	4,97	6,0	1,0	0	7,0	17,0	13,5	7,0
4	25,0	10,0			9,0	4,5	5,3	18,8	8,8	8,8	12,3
5	18,0	15,0	67,7	5,97	5,0	0,53	10,5	16,03	30,0	16,7	3,3
6	10,0	20,0	58,6	4,62	3,3	4,5	10,6	18,4	-		-
7	7,5	14,7		7.00	4,3						
8	5,0	21,3	66,7	5,6	16,0	3,0	18,3	37,3	3,0	3,5	8,4
9	4,0	30,0			4,0	2,0	6,7	12,7			
10	2,5	36,0	68,5	6,3	7,0	2,0	6,0	15,0	4,6	33,0	28,0
11	1,0	76,0	64,6	5,5	10,0	0	4,3	14,3		1 -5 -5 ^	
12	без катализа- тора	87,7			3,3	0	5,0	8,3	8,0	12,0	32,0

2. Наибольший выход эфирорастворимых получается с 5% количеством пятиокиси ванадия от веса лигнина.

ЛИТЕРАТУРА

1. J. A. Pearl, Studies of lignin, J. Am. chem. Soc. 71, 2196, 1949.
2. A. Д. Григорьев. Сравнительное изучение методов получения ванилина изгидролизного лигнина и древесных опилок хвойных пород, Тр. Уральского политехнического института, сб. 96, 4—7, 1960.
3. А. Д. Григорьев, З. В. Пушкарева. Получение ванилина из древесных опилок хвойных пород и гидролизного лигнина с помощью окиси меди, Тр. Уральского политехнического института, сб. 96, 8—18, 1960.