Том 136

1965

ОЧИСТКА КОКСОВОГО ГАЗА ОТ СЕРОВОДОРОДА ВАКУУМ-СОДОВЫМ МЕТОДОМ

К. К. СТРАМКОВСКАЯ, П. Е. БОГДАНОВ, Е. Ф. СЕРКОВА, Н. М. БЕЛОГУРОВ, Н. К. ОВЧАРЕВИЧ

(Представлена научно-методическим семинаром ХТФ)

Вакуум содовый метод внедрен в Советском Союзе для очистки коксового газа от сероводорода при низком давлении. Однако преиму-

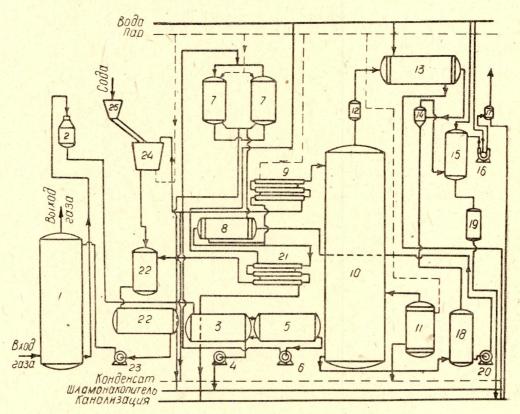


Рис. 1. Технологическая схема установки вакуум-содовой очистки коксового газа.

вого газа. 1- абсорбер, 2- расширитель, 3- отстойник, 4- насос, 5- емкость отработанного раствора, 6- насос, 7- фильтр, 8- теплообменник, 9- подогреватель, 10- регенератор, 11- циркуляционный подогреватель, 12- брызгоуловитель, 13- конденсатор-холодильник, 14- фазоразделитель, 15- конденсатор смешения, 16- ротационный мокрый компрессор, 17- влагоотделитель, 18- промежуточная емкость, 19- барометрический бачок, 20- центробежный насос, 21- холодильник, 22- расходные емкости регенерированного раствора, 23- насос, 24- емкость свежего раствора, 25- бункер для соды.

щества этого метода — простота технологической схемы и надежность в эксплуатации, низкий расход реактивов и фактическое отсутствие вредных стоков; возможность комплексной автоматизации всего процесса с переводом аппаратуры на дистанционное управление и, наконец, использование серы для получения серной кислоты — указывают на целесообразность применения этого метода для очистки коксового газа под давлением в технологических схемах азотно-туковых заводов.

В данной статье приводятся результаты исследования работы установки очистки коксового газа от сероводорода вакуум-содовым методом на одном из азотно-туковых заводов, где имеющиеся башни с болотной рудой не давали нужной степени очистки. На смонтированной в 1961 г. установке, технологическая схема которой приведена на рис. 1, коксовый газ после сухой очистки под давлением 12 ати подается в насодочный абсорбер диаметром 750 мм с высотой насадки 2000 мм. Насадка из керамических колец Рашига 50×50×5 мм. Такие абсорберы установлены на каждом агрегате очистки. Коксовый газ из абсорберов уходит на дальнейшую очистку, в водяные и щелочные абсорберы, а отработанный раствор со всех абсорберов направляется в сборный коллектор и на установку регенерации. Регенератор установлен Тарельчетого типа, с девятью тарелками желобчатого типа один на все абсорберы.

Целью наших исследований являлось определение оптимального

режима для процессов абсорбции газов и регенерации раствора.

Исследование процесса абсорбции

Процесс абсорбции сероводорода водным раствором соды является, по современным представлениям, гетерогенным диффузионным процессом, сопровождающимся очень быстрой обратимой химической реакцией в жидкой фазе, и протекает по следующим уравнениям [1]:

$$Na_2CO_3 + H_2S \stackrel{\Leftrightarrow}{\Rightarrow} NaHS + NaHCO_3,$$

 $Na_2CO_3 + CO_2 + H_2O \stackrel{\rightleftharpoons}{\Rightarrow} 2NaHCO_3.$

Рассматриваемое равновесие представляет собой случай сложной системы, когда в жидкой фазе одновременно существуют в равновесии

с поглотительным раствором H₂S и CO₂.

На процесс абсорбции H_2S и CO_2 из газа раствором соды оказывает существенное влияние большое количество факторов и в первую очередь концентрация поглотителя, температуры абсорбции, плотность орошения и остаточная концентрация H_2S в поглотительном растворе. Поэтому для определения оптимальных условий абсорбции исследовалось влияние концентрации поглотителя от 25 до 35 ϵ/Λ при остаточном содержании NaHS в растворе от 2,5 до 3,5 ϵ/Λ ; плотность орошения от 11,3 до 18,2 M^3/M^2 в час, что соответствовало подаче раствора на абсорбер 5—8 M^3/M^2 с Температура абсорбции менялась от 35 до 45°C.

Содержание сероводорода в газе колебалось от 600 до 14000 промиль при следующем среднем составе коксового газа: $CO_2-2,5\%$, CmHn-2,4%, $O_2-0,5\%$, CO-7,5%, $H_2-57,5\%$ $CH_4-26,5\%$, HCN-0,06%. В связи с тем, что очистка газа осуществляется под давлением 12-13, эта концентрация сероводорода в сжатом газе достигает

почти 20 г/м3.

Результаты исследования представлены на рис. 2-3.

Из полученных данных рис. 2 следует, что при плотности орошения $14.7 \, m^3/m^2$ час степень очистки коксового газа от сероводорода значительно увеличивается с изменением концентрации соды в растворе от $25 \, \epsilon/n$ до $35 \, \epsilon/n$ и составляет конечную величину для температуры $35^{\circ}\text{C} - 86.6\%$, $38^{\circ}\text{C} - 85.68\%$; $48^{\circ}\text{C} - 84.0\%$, $42^{\circ}\text{C} - 81.2\%$; $45^{\circ}\text{C} - 77.2\%$.

При увеличении концентрации соды в поглотительном растворе от 25 до 30 г/л степень извлечения сероводорода из газа возрастает в среднем на 8,5%. При увеличении же концентрации соды от 30 до 35 г/л степень очистки газа изменяется лишь на 1,7% для всех исследованных температур. Остаточное содержание сероводорода в газе при этих концентрациях соды составляет 140—170 промиль, что может быть извлечено имеющейся в технологической схеме водно-щелочной очисткой.

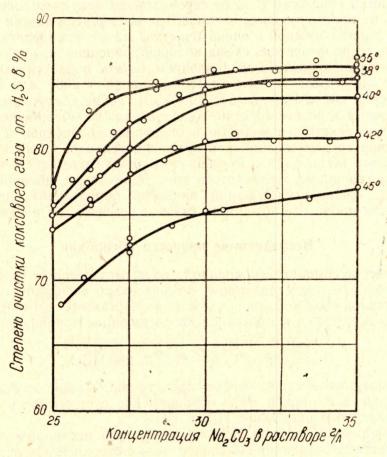


Рис. 2. Зависимость степени очистки коксового газа от концентрации раствора при плотности орошения $14.7 \ m^3/m^2$ час и концентрации NaHS в растворе после регенерации $2.5 \ z/a$.

Данные графика рис. 2 показывают, что наибольшая степень улавливания сероводорода достигается при температуре абсорбции 35°С. При изменении температуры от 35 до 38°С увеличение степени очистки газа незначительно. Увеличение температуры свыше 38°С приводит к снижению степени очистки. Отсюда следует, что наилучшее улавливание сероводорода проходит при 35°С. Однако по имеющимся литературным данным известно, что с понижением температуры абсорбции до 35°С увеличивается абсорбция углекислоты, что приводит к сильному понижению концентрации сероводорода в газе после регенерации, к большему расходу соды, накоплению бикарбоната в растворе, а также к экономически невыгодному расходу пара на регенерацию. Поэтому оптимальной температурой абсорбции следует считать температуру 38—40°С, так как при этом достигается наибольшая избирательность абсорбции по отношению к сероводороду.

Как видно из рис. 3, с увеличением плотности орошения абсорбера от $11.3 \, m^3/m^2$ до $14.7 \, m^3/m^2$ час степень очистки газа от сероводорода возрастает (на 9-16%). Дальнейшее увеличение плотности орошения до $18.2 \, m^3/m^2$ час ведет уже к меньшему увеличению очистки газа и составляет 2.9%. При увеличении плотности орошения обеспечивается лучший контакт между газом и поглотительным раствором. Однако с увеличе-

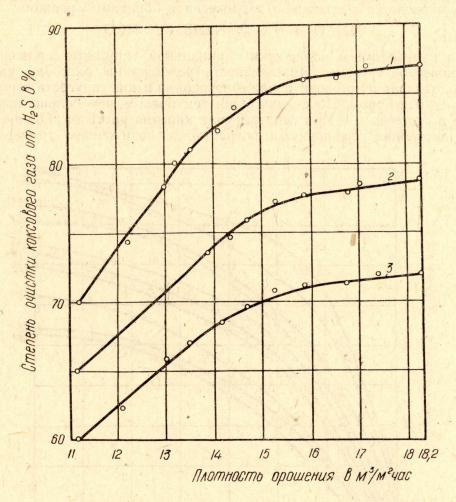


Рис. 3. Зависимость степени очистки коксового газа от плотности орошения при различной концентрации NaHS в регенерированном растворе: $I = 2.5 \ \epsilon/\Lambda$, $2 = 3.0 \ \epsilon/\Lambda$, $3 = 3.5 \ \epsilon/\Lambda$.

нием плотности орошения увеличивается общее количество поглотительного раствора, что приводит к значительному повышению расхода пара на регенерацию и излишнему расходу электроэнергии на перекачивание раствора.

В целях обеспечения достаточной степени очистки коксового газа от сероводорода и основываясь на опыте эксплуатации данной установки, следует считать наиболее рациональной плотностью орошения $14.7 \ m^3/m^2$ час, что соответствует подаче раствора на абсорбер $6.5 \ m^3/uac$.

Из этих же графиков рис. З видно, что увеличение концентрации бисульфида в регенерированном поглотительном растворе ведет к значительному снижению степени очистки коксового газа от сероводорода. При увеличении остаточной концентрации бисульфида в регенерированном растворе от 2,5 до 3,0 и 3,5 г/л уменьшается степень очистки газа

примерно на 6:5 и 6.0% соответственно. Поэтому в целях улучшения очистки газа от сероводорода следует поддерживать концентрацию бисульфида в поглотительном растворе не выше $3.0\ \epsilon/\Lambda$.

Исследование процесса регенерации

Процесс регенерации содового раствора, насыщенного сероводородом, заключается в смещении равновесия в обратимой реакции

$$Na_2CO_3 + H_2S \ge NaHS + NaHCO_3$$

справа налево путем понижения парциальной упругости сероводорода в равновесной системе. Интенсивность регенерации раствора, как известно, зависит от степени понижения парциальной упругости сероводорода над раствором. Последняя будет тем больше, чем больше водяных паров в системе, т. е. при температурах кипения раствора. Однако скорость десорбции сероводорода возрастает с понижением температуры

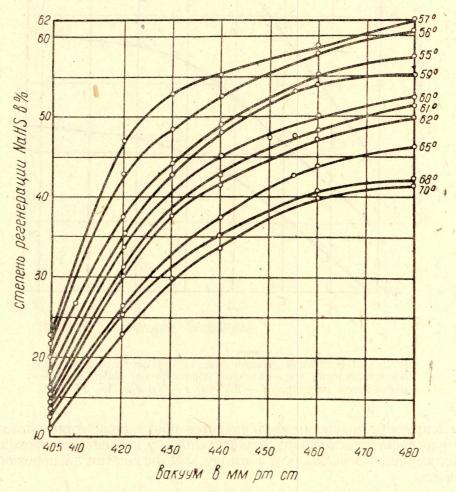


Рис. 4. Зависимость степени регенерации NaHS от вакуума— в колонне при различных температурах подачи раствора.

кипения от 100 до 50—60°, т. е. с повышением вакуума. При одной и той же температуре степень десорбции сероводорода прямо пропорциональна концентрации бикарбоната натрия в растворе (1, 3, 4, 5, 6). Известно, что с повышением температуры равновесие эндотермической реакции

 $2NaHCO_3 \stackrel{>}{\sim} Na_2CO_3 + CO_2 + H_2O$

сдвигается слева направо, и концентрация бикарбоната в растворе снижается, что приводит к ухудшению регенерации. Температура кипения раствора $50-60^{\circ}$ соответствует вакууму в колонне 650-580 мм рт. ст.

Влияние вакуума на степень регенерации раствора нами исследовалось в пределах 405—480 мм рт. ст., достижение более высокого вакуума при существующем оборудовании было невозможно. Температура низа колонны и время пребывания раствора в колонне поддерживались постоянными соответственно 76°С и 116—118 сек.

Результаты исследования, представленные на рис. 4, указывают, что с увеличением вакуума в колонне от 405 до 480 мм рт. ст. степень регенерации бисульфида натрия возрастает при всех исследованных

температурах подачи раствора на колонну.

Наилучшей температурой подачи раствора на колонну является 56—57°, так как при этих температурах, очевидно, устанавливаются наилучшие условия регенерации бисульфида. С понижением температуры подачи раствора на колонну до 55°C снижается температура верха регенератора при условиях вакуума 470—480 мм.

При увеличении температуры подачи раствора от 58 до 70°С идет сильное снижение степени регенерации бисульфида натрия вследствие перегрева раствора выше оптимальных условий. Регенерация гидро-

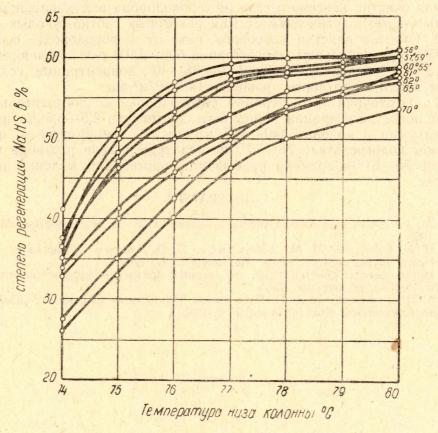


Рис. 5. Зависимость степени регенерации NaHS от температуры низа регенератора при различных температурах подачи раствора.

сульфида натрия проходит заметно до тех пор, пока в растворе находится относительно достаточное количество бикарбоната, с повыше нием же температуры в колонне увеличивается скорость разложения бикарбоната натрия, т. е. ухудшаются условия для регенерации гидро-

сульфида натрия.

В связи с тем, что при регенерации поглотительного раствора кипячением под вакуумом скорость десорбции сероводорода зависит от температуры кипения, то температура в циркуляционном подогревателе изменялась в пределах $74-80^{\circ}$, время пребывания раствора в регенераторе поддерживалось равным 116-118 сек при вакууме 455 мм рт. ст.

Анализ полученных результатов, представленных на рис. 5, показывает, что при повышении температуры низа регенератора от 74 до 78° степень регенерации гидросульфида натрия резко увеличивается (на 11—19%), а при дальнейшем возрастании температуры (свыше 78°) среднее повышение степени регенерации бисульфида натрия составляет только 1,5—3%. Поэтому для достижения максимально возможной регенерации гидросульфида натрия при всех температурах подачи раствора на колонну следует поддерживать температуру низа регенератора не ниже 78—80°, а температуру подачи раствора на регенератор—в пределах 56—61%.

Выводы

1. Установлено, что вакуум-содовый метод может быть использован для очистки коксового газа от сероводорода под давлением применительно к технологическим схемам некоторых азотно-туковых заводов.

2. Степень очистки коксового газа от сероводорода составляла $75 \div 85 \%$ при начальной концентрации $600-1400 \ p/м$ в условиях давления $13 \ atu$, температуре абсорбции $38-40^\circ$, концентрации соды в ра-

створе 35 ϵ/Λ и плотности орошения 14,7 M^3/M^2 час.

3. Остаточная концентрация сероводорода в поглотительном растворе после регенерации может быть достигнута 2,5-3,5 e/n при условии вакуума в колонне 440-480 мм рт. ст., температуре в циркуляционном подогревателе $78-70^\circ$, температуре подачи раствора на регенератор $58-61^\circ$ и времени пребывания раствора в колонне не менее 120 сек.

ЛИТЕРАТУРА

1. М. С. Литвиненко. Очистка коксового газа от сероводорода. Металлургиздат, 1959.

2. Н. Н. Егоров, М. М. Дмитриев, Д. Д. Зыков. Очистка от серы кок-

совального и других горючих газов. Металлургиздат, 1960.

3. Новые методы очистки газов от вредных примесей, Информационный бюлле-

тень, № 10, Гипрогазочистка, 1960.

4. А. П. Сергеев и А. П. Ильичев. Регенерация балластных солей вакуумпоташных сероочисток. Кокс и химия, № 8, 1958.