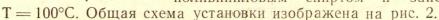
ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНЫХ ВЕСОВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ С ПРИМЕНЕНИЕМ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ СХЕМ

Г. Н. ИВАНОВ, В. А. БУДАЕВА, В. П. ЛОПАТИНСКИЙ

(Представлена научным семинаром проблемных лабораторий химико-технологического факультета)

Ранее отмечалось [1], что большинство существующих методов определения молекулярных весов являются недостаточно точными, относительно трудоемкими и длительными в выполнении. Часто это связано с техническими трудностями в аппаратурном оформлении. В том случае, когда аппаратура не является сложной, эксперимент усложняется длительностью, что иногда приводит к невоспроизводимости полученных данных, особенно при определении молекулярных весов высокополимеров [2, 3]. В настоящей работе приводится описание метода определения

молекулярных весов органических соединений, в значительной мере свободного от указанных выше недостатков.


В основу измерений положен принцип криоскопии. Понижение температуры замерзания раствора регистрировалось термистором, включенным в мостовую измерительную схему.

Установка состоит из:

- 1) измерительной ячейки с встроенным в нее термистором (рис. 1), марки КМТ-4 (45 к Ω). Объем раствора, загружаемого в ячейку, составлял около 5 $M\Lambda$;
- 2) сосуда Дьюара с охлаждающей смесью, в которую погружали измерительную ячейку;
 - 3) мотора с мешалкой;
 - 4) измерительного моста Р-333;

5) микроамперметра M-95 и $i = 10^{-9}a$.

Измерительная ячейка изготовляется изстекла. Все электрические вводы замазываются поливиниловым спиртом и запекаются при

Процесс измерения состоял в следующем.

Приготовлялся примерно однопроцентный раствор вещества в бензоле. Раствором заполняли рабочий объем измерительной ячейки. Ячейка помещалась в охлаждающую смесь, при этом раствор в ней все время перемешивался мешалкой.

По мере охлаждения раствора сопротивление термистора падает. Это падение температуры раствора, а следовательно, и сопротивления

Рис 1.

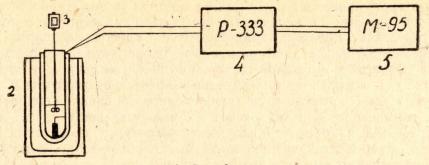
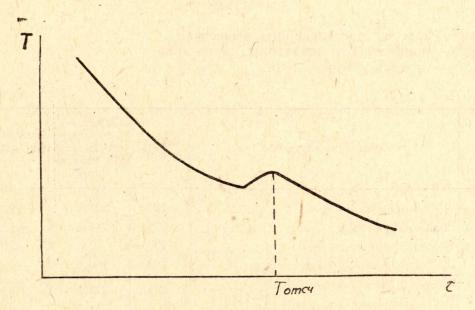



Рис. 2.

,Рис. 3.

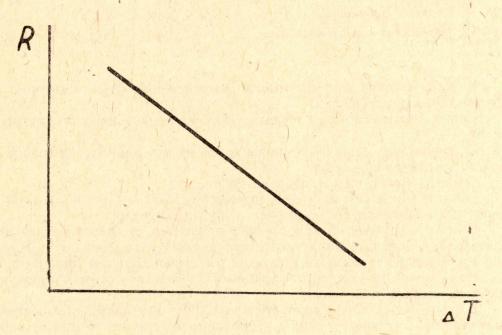


Рис. 4.

ра может градуироваться сразу же в единицах молекулярного веса; при этом значения навесок вещества и растворителя вводятся в схему петермистора, как правило, происходит с переохлаждением раствора. С момента начала кристаллизации температура (сопротивление) скачком возрастает до какой-то максимальной величины и имеет вид пика (рис. 3), который и принимается за отсчетное значение.

Этому пику соответствует определенное значение сопротивления в омах термистора. Снимая отсчет на измерительном мосте, по зависимости $R - \Delta T$ находим понижение температуры замерзания. Эта зависимость в небольшом интервале ΔT имеет вид прямой линии (рис. 4).

Вычисление молекулярного веса производится по формуле:

$$M_{\rm B} = \frac{g \cdot 5100}{\Delta T \cdot G} \,,$$

где д — навеска растворенного вещества,

 ΔT — понижение температуры замерзания,

G — навеска растворителя.

Таблица 1

№ п.п.	Название вещества	Расчет- ный М _в	Определен- ный М _в (среднее из 3-х измере- ний)	Относитель- ная ошибка, %
1	9-бутил-карбазол	223	223,8	+0,35
2	3-ацетил-карбазол	209	212,7	+1,7
3	9-этил-3-ацетилкарбазол	237	231	-2,5
4	3,6-диацетил-9-н-пропил-карбазол	293	292,5	-0,18
5	3-хлор-9-(β-хлор)-этилкарбазол	264	225,2	+0,38
6	3-хлор-9-(β-окси)-этилкарбазол	245,5	243,5	-0,81
7	Диизопропиловый эфир 3, 6-ди-(α-оксиэтил)			
	9-этилкарбазола	367	373	+1,65
8	3,6-диацетил-9-амилкарбазол	321,4	330,4	+2,8
9	3,6-диацетил-9-изоамилкарбазол	321,4	331,8	+3,2

В табл. 1 приведены данные по определению $M_{\rm B}$ некоторых веществ данным способом.

Как видно из таблицы, средняя ошибка определений лежит в пределах 1-3%.

Достоинством данной схемы является то, что процесс измерений $M_{\rm B}$ можно автоматизировать.

Одна из таких схем приведена на рис. 5.

Датчик температуры (R_T) термистор КМТ-4 (100 к Ω) (при измеряемых значениях T°C) включен в мостовую схему.

Сигнал, получаемый вследствие разбаланса, подается на катодный повторитель, который является согласующим звеном между высокоомной измерительной схемой и низкоомным записывающим прибором.

Назначение и номиналы отдельных элементов схемы обычны и не

требуют особых пояснений.

В том случае, когда работать приходится все время с веществами, значения $M_{\rm B}$ которых лежат в небольшом интервале, то шкала прибо-

ра может градуироваться сразу же в единицах молекулярного веса; при этом значения навесок вещества и растворителя вводятся в схему перед измерением установкой потенциометров на соответствующие им значения (R_2, R_4, R_7) .

Но такое решение вопроса в большинстве случаев представляет неудобство, поэтому чаще отсчет следует вести в тех же величинах, что

при ручном варианте исполнения.

При использовании автоматического варианта отпадает необходимость в постоянном контроле, так как все показания прибора фиксируются на диаграммной ленте.

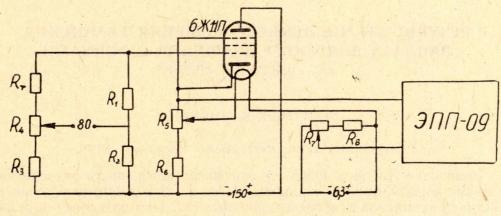


Рис. 5.

Выводы

1. Разработана простая и удобная схема определения молекулярных весов органических соединений с применением в качестве термочувствительных элементов термисторов.

2. Метод отличается высокой воспроизводимостью, быстротой (15—20 мин/на 1 определение), отсутствием постоянных ручных опера-

ций и точностью (относительная ошибка 1—3%).

3. Метод позволяет автоматизацию процесса определения молекулярных весов, одна из схем которой разработана.

ЛИТЕРАТУРА

1. Г. Н. Иванов, В. П. Лопатинский. Известия Томского политехнического института, т. 126, 1964.

2. Методы исследования полимеров, под ред. Аллена, Издатинлит, 1961.

3. Цянь Жэнь-Юань. Определение молекулярных весов полимеров, Госхимиздат, 1962.