И З В Е С Т И Я ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 137

1965

ТЕПЛООТДАЧА ВЕРТИКАЛЬНОГО РЯДА ГОРИЗОНТАЛЬНЫХ ТРУБ В УСЛОВИЯХ СВОБОДНОЙ КОНВЕКЦИИ ВОЗДУХА

Ю. А. ЗАГРОМОВ, Ю. А. КОРОЛЕНКО

(Представлена проф. докт. Г. И. Фуксом)

Процесс теплоотдачи пучков труб в условиях свободной конвекции описывается соотношением [1, 2, 5, 6]

$$Nu = f\left(Gr, Pr, \frac{S}{D}\right).$$
(1)

Проведено экспериментальное исследование явления теплоотдачи вертикального ряда горизонтальных труб в воздушной среде. При этом критерий Pr остается постоянным и зависимость (1) принимает вид

$$\operatorname{Nu} = f\left(\operatorname{Gr}, \frac{S}{D}\right). \tag{1a}$$

Опыты проводились на специальной установке (рис. 1). Основным ее элементом является модель пучка, собираемая с заданным вертикальным шагом S из отдельных стержней. Каждый стержень представляет собой латунную трубку с наружным диаметром $D = 6 \, \text{мм}$ н длиной $L = 100 \, \text{мм}$. Внутрь латунной трубки вводится стеклянная трубка с вмонтированным в нее нихромовым электронагревателем (рис.2). Сопротивление нагревателя колеблется в пределах 4,00 — 4,04 ома (среднее $R = 4,02 \, \text{ом}$).

Пространство между латунной и стеклянной трубками заполнялось слоями алюминиевой фольги толщиной $\delta = 0,02$ мм.

Каждый стержень снабжался медь-константановой термопарой из проводов d = 0.1 мм, проложенной между латунной и стеклянной трубками. Последовательность операций по изготовлению трубок можно уяснить по рис. 3. Спай термопары выводился в сверление d=0,3 мм на середине длины трубки и припаивался. При сборке установки спаи всех термопар были на верхней образующей трубки [3].

Нагреватели всех стержней при сборке соединялись последовательно. Питание током нагревателей производилось через стабилизатор напряжения СНЭ-220-0,75 и автотрансформатор ЛАТР-1 РНО-205-2. Мощность N, потребляемая установкой, измерялась ваттметром ЭДВ класса 0,2.

Для измерения э. д. с. термопар была принята схема с общим холодным спаем. Э. д. с. термопар измерялась лабораторным потенциометром ПП З класса. Для переключения термопар использовался переключатель на 10 термопар.

.52

Рис. 1. Схема экспериментальной установки: 1—стабилизированный выпрямитель; 2—автотрансформатор; 3—ваттметр; 4—модель пучка; 5—горячий спай термопары; 6—холодный спай термопары; 7—термостат холодного спая; 8, 11—термометры; 9—потенциометр; 10—нульгальванометр.

Рис. 2. 1—латунная трубка; 2—нагреватель нихромовый; 3—стеклянная трубка; 4—мелный токоподвод к нагревателю; 5--жаростойкая замазка, 6—термопара; 7—кольцевое пространство, заполненное алюминиевой фольгой.

Рис. 3. Технология изготовления стержня: 1—нихромовая проволока; 2—3—спираль нагревателя и токоподводы; 4—5—пайка и полготовка нагревателя; 6—стеклянная трубка; 7—нагреватель в трубке: 8—нагреватель, обмотанный фольгой; 9—трубка латунная; 10 стержень в сборе; 11—стержень, покрытый копотью. Необходимое число стержней объединялось в пучок с шагом S. Вертикальный размер шага регулировался опорными винтами.

Модель устанавливалась на высоте 40 *см* над уровнем стола внутри специального кожуха, изолирующего ее от движения воздуха в помещении.

Минимальное расстояние модели до стенки кожуха было не менее 20 см. Температура окружающей среды измерялась термометром ТНЛ с ценой деления 0,1°С. Шарик термометра располагался внутри кожуха.

Опыты проводились при установившемся тепловом режиме. В опытах замерялись: мощность тока, потребляемая моделью— N—по ваттметру; температура холодного спая (в начале и конце опыта) t_0^{H} и t_0^{K} ; температура воздуха внутри кожуха (в начале и конце опыта) t_f^{H} и t_f^{K} ; температура поверхности стержней модели t_{w} .

Показание каждой термопары снималось дважды с интервалами 15 мин. для проверки стационарности режима.

Всего было проведено 50 опытов. Для каждого опыта подсчитывались:

1. Общий расход тепла моделью

$$Q_{\mathfrak{I}\mathfrak{I}\mathfrak{I}}=N \quad [\mathfrak{B}\mathfrak{M}].$$

2. Потеря тепла от торцов стержней, от токоведущих и соединительных проводов

$$Q_n = Q'_n + Q''_n + Q''_n :$$

а) потери от торцов стержней подсчитывались по формуле

 $Q'_n = 2n 2\lambda D\Delta t_{cp};$ [4, табл. 3—1]

б) потери от токоведущих проводов

$$Q_n'' = h\left(\frac{2\pi\lambda}{\ln\frac{4h}{d'}}\right)\Delta t_{\rm cp} 2n;$$
 [4, табл. 3—1]

в) потери от соединительных проводов

$$Q_n^{'''} = L' \frac{2\pi\lambda\Delta t_{\rm cp}}{\ln\frac{4h}{d'}}$$
. [4, табл. 3—1]

В приведенных формулах: $\Delta t_{cp} = t_{wcp} - t_{fcp}$; t_{wcp} -средняя температура поверхности стержней; D- диаметр стержней [M]; n - число стержней; d' - диаметр соединительных проводов ($d' = 0,0015 \ M$); h-общая длина всех перемычек между стержнями ($h = 0,008 \ M$); L'-общая длина соединительных проводов [M]; λ -коэффициент теплопроводности материала $\left[\frac{Bm}{Mrpad}\right]$. Потери тепла в опытах не превосходили 10%.

3. Тепло, отданное лучеиспусканием от каждой из трубок

$$Q_{\pi} = C_{\rm o} \,\varepsilon_{\rm M} \, H_{\rm c\phi} \left[\left(\frac{T_{\,\rm wcp}}{100} \right)^4 - \left(\frac{T_{\,\rm fcp}}{100} \right)^4 \right] \quad [BM],$$

где є_м-степень черноты стержней модели.

В опытах поверхность стержней покрывалась сажей (єм=0,952. [4]). *Н*_{сф}—взаимная поверхность.

Для всех стержней (кроме 2 крайних) величина *H*_{сф} подсчитывалась по формуле

$$H_{c\phi} = 2DL (a + \arctan tg \sqrt{a^2 - 1} - \sqrt{a^2 - 1}),$$

где /

$$a=\frac{S}{D}$$
.

Для крайних стержней

$$H_{c\phi}^{\kappa} = DL \left(a + \operatorname{arc} \operatorname{tg} \sqrt{a^2 - 1} - \sqrt{a^2 - 1} \right) + \frac{\pi DL}{2} \cdot$$
 [4]

[4]

4. Тепло, отданное конвекцией,

$$Q_{\kappa} = Q_{\Im \pi} - Q_{\pi} - Q_{n} \ [Bm].$$

5. Коэффициент теплоотдачи стержней модели

$$\alpha_{\kappa} = \frac{Q_{\kappa}}{F_{\rm cm} \, \Delta t_{\rm cm} \, n} \quad \left[\frac{BM}{M^2 r p a \partial} \right],$$

где F_{ст}-боковая поверхность стержня; *n*-число стержней.

$$F_{\rm cm} = \pi DL \cdot 10^{-6} \ \mathrm{M}; \ \Delta t_{\rm cm} = t_w - t_f.$$

По полученным значениям α_{κ} и $\Delta t_{\rm cm}$ были подсчитаны критерии

Nu и Gr и построен график в координатах lg Nu_f—lg Gr_f (рис. 4). Как видно, в логарифмических координатах зависимость имеет линейный характер и, следовательно, может быть описана уравнением вида

$$\lg \operatorname{Nu}_f = \lg C + m \lg \operatorname{Gr}_f.$$
⁽²⁾

Значение величин т для каждой серии опытов определялось как тангенс угла наклона прямой к оси абсцисс. Составляя и решая ряд уравнений (2) по данным опытов и определенной величине т, находим С.

Были сделаны попытки найти зависимость коэффициента С в исследуемом интервале от $\frac{S}{D}$. Для этой цели полученные опытные значения коэффициентов С были нанесены на график в координатах С и <u>S</u> (рис. 5). Из рис. 5 видно, что зависимость имеет линейный характер и, следовательно, может быть описана уравнением вида

$$C = k + b \frac{S}{D}$$

Значение величины b так же, как и в предыдущем случае, определяем из графика как тангенс наклона к оси абсцисс (b = 0,08). Подставляя величину b в уравнение для каждой серии опытов и решая их, находим k = 0,072.

Аналогичные попытки были сделаны в определении зависимости m от $\frac{S}{D}$. В исследуемом интервале $\frac{S}{D} = 1,5-4,0$ значение m подсчитывается по уравнению

$$m = 0,38 - 0,02 \frac{S}{D}$$
 (3)

Таким образом, критериальная зависимость теплообмена при свободной конвекции в вертикальном ряду в интервале $\frac{S}{D} = 1,5 - 4,0$ дается уравнением

56

*

$$\operatorname{Nu}_f = C \operatorname{Gr}_f^m, \tag{4}$$

где $C = [0,072 + 0,08 \frac{S}{D}$ (5), а *m* определяется из (3).

Поскольку значительное увеличение шага приводит к тому, что каждая трубка будет охлаждаться как одиночный стержень, то следует ожидать, что уравнение (4) примет вид известной формулы [5,6] для одиночных стержней, охлаждающихся при свободной конвекции

 $Nu_f = 0,47 \operatorname{Gr}_f^{0,25}$.

Как видно из формулы (3) и (5), значения т и С стремятся к 0,25 и 0,47, соответственно.

Произведено сравнение расчетов ак по формуле (4) с опытными значениями ак. Результаты сравнения показали, что максимальное отклонение расчетных значений от опытных не превышает + 5%.

ЛИТЕРАТУРА

1. А. А. Гухман. Физические основы теплопередачи. ОНТИ, 1934.

2. Ю. А. Короленко. Известия ТПИ, т. 110, 1962. 3. Г. И. Кружилин, В. А. Шваб. Журнал технической физики. Т. 5, в. З и 4, 1935.

4. С. С. Кутателадзе, В. М. Боришанский. Справочник по теплопере-даче. ГЭИ, 1959. 5. И. М. Михеева. Теплоэнергетика. № 4, 1956.

6. М. А. Михеев. Основы теплопередачи. ГЭИ, 1956.