ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 105

1960 г.

К ВОПРОСУ ОБ ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ РАДИОЛОКАЦИОННЫХ НАБЛЮДЕНИЙ МЕТЕОРНОГО ПОТОКА

Е.И. ФИАЛКО

(Представлено научным семинаром радиотехнического факультета)

В астрономическом циркуляре № 173 опубликована работа Ю. А. Пупышева, посвященная радиолокационным наблюдениям метеорного потока Персеид 1956 г., проведенным на астрономической обсерватории имени Энгельгардта [1].

Приведенные результаты экспериментов представляют определенный интерес. Однако некоторые положения, высказанные автором [1], вызывают возражения.

На серии кривых, изображающих средние часовые числа эхо

Рис. 1. Изменение среднего часового числа метеорных эхо 10—12 августа 1956 г. (по данным Астрономической обсерватории им. Энгельгардта [1]. *N* — среднее часовое число обнаруженных метеоров; *t* — звездное время; 1 — 10 — 11 августа; 2—11—12 августа. 10—13 августа, отчетливо видны три максимума, соответствующие $\approx 22^h$, $\approx 1^h$ и $\approx 6^h$ звездного времени (на рис. 1 приведены результаты наблюдений 10—12 августа). В связи с этим Ю. А. Пупышев считает, что "можно выделить три потока (I, II, III), определение радиантов которых пока затруднительно [1]".

По нашему мнению, при объяснении причины появления нескольких пиков численности метеорных эхо необходимо учитывать лепесткование диаграммы направленности, обусловленное отражением радиоволн от поверхности земли (рис. 2).

• Рассмотрение картины суточного хода радианта Персеид и диаграммы направленности антенны (которая во время наблюдений

была направлена на запад и наклонена к плоскости горизонта под углом 22°) в условиях нормальности метеорных отражений ¹) под-

¹) Метеорные отражения наблюдаются в случне достаточно высокой электронной плотности в участке следа, примыкающем к основанию перпендикуляра, опущенного из точки, в которой расположен радиолокатор, на траекторию метеора.

тверждает такое предположение (рис. 3). При длине волны $\lambda \approx 4 \, m$ будут обнаруживаться главным образом метеоры, ионизированные следы которых формируются в областях, наиболее интенсивно облучаемых радиоволнами. Следовательно, возрастание численности об-

наруженных метеоров будет наблюдаться при пересечении радиантом плоскостей, перпендикулярных осям парциальных лепестков (рис. 3).

Как видно из рис. 3, в течение приблизительно половины суток существовали благоприятные условия для обнаружения метеоров (при движении радианта по дуге III₁- $II_1 - I_1 - I - II - III);$ B ocтальное же время суток число обнаруженных метеоров должно было существенно уменьшиться. Эти предположения находятся в соответствии с результатами наблюдений (рис. 1).

Из сопоставления рис. 1, 2 и 3 следует, что пик II соответствует приему на лепесток 3, пик I приему на лепесток 4 и пик III — приему на лепесток 2.

При приеме на нижний лепесток 1 метеорные эхо практически не могли обнаруживаться вследствие большой наклонной дальности ($R \approx 1000 \ \kappa m$).

Изложенные соображения не исключают наличия неоднородностей (ветвей) в потоке Персеид; однако утверждение о возможности выделения трех

потоков [1] является несостоятельным, так как не учтено влияние свойств диаграммы направленности антенной системы на численность обнаруженных метеоров.

Для проверки состоятельности утверждения Ю. А. Пупышева относительно наличия трех потоков в потоке Персеид целесообразно было провести одновременное наблюдение потока с использованием двух антенн: направленной антенны и полуволнового вибратора, расположенного на высоте $\approx \frac{\lambda}{4} \div \frac{\lambda}{3}$ над уровнем земли. В последнем случае отсутствует лепесткование диаграммы направленности и

Рис. 2. Диаграмма направленности антенной системы (иллюстрация): a — диаграмма направленности в вертикальной плоскости (в свободном пространстве), основной лепесток; δ — диаграмма направленности антенной системы (в вертикальной плоскости) с учетом отражения радиоволн от поверхности земли; β_0 — угол наклона стрелы антенны относительно плоскости горизонта. Угол, под которым наклонено направление наиболее интенсивного излучения парциального лепестка $\beta \kappa_{(макс)}$ определяется из $\sin \beta \kappa_{макс} \approx \frac{\lambda}{4h}(2k-1)$, где λ — длина волны, k — номер лепестка, h — высота подъема антенны над уровнем земли. При $h \approx 3\lambda$: β_1 (макс) $\approx 5^\circ$; β_2 (макс) $\approx 15^\circ$; β_3 (макс) $\approx 25^\circ$; β_4 (макс) $\approx 35^\circ$.

19

наличие значительных пиков на кривой N(t) свидетельствовало бы о неоднородности потока.

Рис. 3. Ход радианта Персеид (иллюстрация). 1, 2, 3, 4 — линии пересечения сферы с плоскостями нормальными соответственно осям 1, 2, 3, 4-го лепестков диаграммы направленности антенны; пунктир — траектория радианта Персеид. При нахождении радианта в точках III и III₁ прием осуществляется главным образом на 2-й лепесток.

Выводы

1. Особенности изменения средних часовых чисел обнаруженных метеорных следов, отмеченные во время радиолокационных наблюдений потока Персеид 1956 г. [1], могут быть объяснены особенностями диаграммы направленности антенны (а не только наличием трех метеорных потоков в составе потока Персеид).

2. При интерпретации результатов радиолокационных наблюдений метеоров необходимо учитывать форму диаграммы направленности антенной системы.

3. Для выявления неоднородности метеорного потока следует провести наблюдения с использованием антенны с диаграммой направленности, не подверженной лепесткованию.

ЛИТЕРАТУРА

1. Пупышев Ю. А., Радиолокационные наблюдения метеорной активности на Астрономической обсерватории им. Энгельгардта 10—17 августа 1956 г., Астрономический циркуляр № 173, 1956.