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Abstract. A method of calculation of interatomic interaction potentials in the presence of 

ionized states has been developed. They have been obtained for the atoms with different 

ionization degree on example of aluminum. The Heine-Abarenkov-Animalu model potential 

form factors was employed. The form factor parameters of ionized atoms was determined on 

the base of the quantum defect method using the atomic-spectroscopy data.  The potential of 

interatomic interaction for different charged states with different degree of ionization were 

determined. 

1. Introduction 

It is known that intensive radiation generates ionized atoms within the track of a fast charged particle 

as well as near the solid surface. The potentials of interactions between these atoms and surrounding 

particles change considerably. The knowledge of corresponding potentials of interatomic interaction is 

necessary for studying the behavior of partially or entirely ionized matter. 

Therefore, aluminum was taken as an example studying the interatomic potentials in metal containing 

ionized states. Calculations were based on the method of pseudopotentials using Heine-Abarenkov-

Animalu model potentials with parameters which were determined from spectroscopic terms of free 

ions following the method of quantum defect.  

2. Quantum defect method 

 

The energetic levels Enl of a single electron in the area of positive ions with the electron shells being 

similar to the spherically symmetric electron shells of inert gases, in particular Na+, Mg2+, Al3+, Si4+, 

P5+,S6+ , Cl7+, are known to satisfy the relation [1]: 

 
22

/ ,
nl nl nl

n            (1) 

where Z is the ion-core charge, δnl  and Δnl denotes quantum defects characterizing the |Ze|–charge 

induced deviation of an atomic potential in such a configuration of inert gas shells from a Coulomb 

ones. Figure1 shows a linear dependence of the value of spectroscopic terms of the atomic series 

considered on a square of the ion-core charge. 

   It turns out that there also are similar dependences for additionally ionized cores (figure2). Here the 

following series Na2+, Mg3+, Al4+, Si5+, P6+,S7+ , Cl8+ will be realized. 

   Using this empirical law we have determined the mode potential parameters of the additionally 

ionized cores with respect to the energies εnl =Enl – Δnl , as it was done for transition metals in [1].  

Radial wave equation with a model potential describing the electron motion is written as 
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Figure 1. Spectroscopic term values E3p as 

function of the chemical valence. 

 

 

where χ(r) is the radial wave function and l is the angular momentum. With such a representation ε is 

given in rydbergs and vl in atomic units.  

   The model potential of the electron ion-core interaction has a form 
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here 
m

R  is a model radius closed to the ion-core radius which provides for joining the inside and 

outside solutions of the wave equation. 

   After making a substitution of  

Zr  and 
l

r 2A    into expression (2) it will be written as  

 
 2

2 2

11
1 0

2

l l


 

  
    

 

   for   
m

r R ,    (4) 

 
2

2 2

( 1) 2
0

l l
  

  

  
     

 

 for   ,
m

r R     (5) 

where 2
/ z   .  

 

 

 

Figure 2. Spectroscopic term values E2p as 

function of the ion-core charge. 

 

 

   Solution of equation (4) are the spherical Bessel functions and equation (5) is the Coulomb wave one 

which was solved according to the procedure described in [2]. 

   By setting the logarithmic derivatives from solutions of equation (4) equal to those in equation (5) at  

r=Rm one obtains an expression for determining the parameters Al : 
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where 2
m l nl

x R А   , jl(x) denotes the spherical Bessel functions, 0Ul, 1Ul  are regular and irregular 

parts of the Coulomb wave function respectively, N=n-nl expresses an effective quantum number,  Dl 

= (dUl/d), 
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where Г is a gamma-function [3]. 

 The values of spectroscopic terms =nl  were calculated from tables [4]. Al values as function of 

energy =nl at fixed l.  

 Al  may be calculated precisely only for the energies which are consistent with the lines observed 

in the electron emission spectra of a core potential. There in the function Al(nl) is chosen so that the 

model potential will give eaten values consistent with nl. Therefore, first, we estimate Al for as many 

energy values as experimental lines exist, after wards linear interpolation add extrapolation to the 

Fermi energies is made. 

 Here the question arises, what value is a real energy of the conduction electrons. In contrast to 

isolated ion (equation2) Schrodinger equation for the conduction electron in metal has a form 
2
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where (V+)ion is the potential of this ion and (V+)rest is the potential caused by other ions and 

conduction electrons. 

 Expression (8) may be written as 
2
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 Equation (9) is similar to equation (2) for an isolated ion with electron energy 
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Figure 3. Energetic dependence of the 

parameters Al for l=0 and z=3. Dashes region 

corresponds to the energies of the occupied 

conduction electron states. 

 

 

 Ii is the ionization energy of outside electron in a free atom, Ic is the electron cohesive energy, kF is 

the Fermi radius, m* is the effective electron mass, Ех is the exchange energy, Ес is the correlation 

energy of a free electronic gas per an electron, х and с are respectively, exchange and correlation 

potentials, and Ra is an atomic radius. 
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 The potential (V+)rest  induced by the rest residual ions and conduction electrons may be written 

as [5]: 

rest =х + с,        (12) 
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 Figure3 shows an energetic dependence of parameter 
0

A for an electron in the field of a three-

charged ion. The energy levels  nl  in 3
Al

 -ion, the Fermi energy
F

  and that of the bottom of 

conduction band 
2 2

0
/ 2

F F
k m    are shown in terms of the ion energy [6].  

 The ion-core radius 
c

R is an important value for calculating interatomic potential. Its procedure 

estimation is following. 

 According to [7,8] the wave electron function outside the core has a form 
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where L is the added Lagerr polynomial, *=2Zr/na0, a0 is a Bohr radius. 

 Then the wave function will be 
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 Inside the core it is 

( ).
ni i
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 Here A is a normalization factor, , 2 .
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 Expression (15) included the numbers up to (n-2) order, 
2* n

 and 
3* n

  are the major ones. If 

keep only these two members, one may think that n adopts any fractional values. At  
c

Rr   the 

logarithmic derivatives from expressions (15) and (16) may be set equal : 
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 By solving graphically equation (17) we hand found the ion-core radius of additionally ionized 

atom. 

 As it should be guess 
c

R  value seemed to be not very sensitive to the degree of ionization. 

 As for an effective mass and charge of electron conduction, we counted 1/
*

mm , as it was done 

in [1], while the parameter inserted in expression to define the effective charge   1
*

ee , which 

results from orthogonality correction, was calculated from a formulae 

  .2//
3

ac
RR        (18) 

 

Table 1. Parameters of model potential 

Z A0 A1 A2 Rm Rc  

3 1,38 1,64 1,92 2 1,08 0,024 

4 1,35 1,756 1,46 2 1,05 0,022 
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 Table 1 illustrates the parameters of a model potential for usually charged aluminum, taken from 

reference [1], and those obtained by us for additionally ionized core for comparison. All the measured 

values are in atomic units. 

 

3. Results and discussion 

 

Figure 4 represents the potential of interatomic interaction for different charged states in aluminum 

which were estimated using the above data. Calculation was done for a situation when the ionized 

atom concentration is small and consequently the conduction electron concentration does not differ 

from an usual one.  

 

 

 

Figure 4. Interatomic potential: 1 – Al3+ and 

Al3+; 2 – Al4+ and Al3+ ;3 – Al4+ and Al4+. 

 

 

 This figure shows that ionization leads to the strong decrease in the depth of the first minimum of 

the potential function corresponding to the distance area between the nearest neighbors for three- or 

four-charged ions. Moreover, for the pair of particles with four charges the first minimum disappears 

absolutely. Atoms fall to the repulsion branch of interaction potential. As a result, the crystal lattice 

changes to the state of nonequilibrium. 

 On the basis of the similar potentials of interatomic interactions, applying the method of molecular 

dynamics, we modeled the dispersion of aluminum surface within the track  of charged particles. It 

was shown that ionization greatly affects the dispersion process of surfaces of metals. However, the 

molecular-dynamic dispersion modeling in many cases is qualitative. For the more thorough 

investigation of destruction processes of surfaces we should solve the equation of thermal elasticity, 

where in its turn we should know the equation of substance condition.  
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