
NEM and MFEM Simulation of Interaction between 

Time-dependent Waves and Obstacles  

V A Perminov
1
, T S Rein

2
, S N Karabtcev

2
 

1
Tomsk national research polytechnic university, chair of ecology and health and 

safety, Tomsk, Russia 
2
Kemerovo state university, UNESCO NIT chair , Kemerovo, Russia 

E-mail: p_valer@mail.ru, tsrein@mail.ru, skarab@kemsu.ru 

Abstract. Fundamental research challenge of structural integrity and construction 

resistance while interacting with fluid or gas is of high importance when estimating 

their efficiency and lifetime. The paper presents the simulation results of interaction 

between incompressible ideal fluid and an escarpment at the bottom, and interaction 

between viscous incompressible fluid and an obstacle above fluid surface. Flow 

patterns at different times and chronograms of hydrodynamic loads on solid walls of 

computational domain, horizontal and vertical obstacles are displayed. 

1. Introduction

The paper shows solution results of the problems dedicated to fluid interacting with vertical and 

horizontal obstacles in the context of classical nonlinear problem statement where velocity vector 

component and pressure domain are unknown. This statement enables to carry out comprehensive 

study of wave flows during all stages of simulation experiment including wave collapsing , vortex 

formation, turbulent flows with possible intermixing fluid layers formation. 

Nowadays there is a whole range of mesh methods. Finite elements method (FEM) [1] and control 

volume method (CVM) [2] are the most popular of them. However, mesh-free methods [3] are more 

often used. They approximate equations into partial derivatives being based on nodes set without 

knowing any additional information about mesh structure. Smoothed Particle method [4], Lagrangian 

and Eulerian particles method [5] appear to be very efficient in the context of hydrodynamics and 

gasdynamics dynamics problems. Relatively low accuracy and difficulties based on carrying in 

boundary conditions are disadvantageous features of mesh-free methods. 

The facts described above conduced to new conventionally mesh-free methods which include both 

ideas and opportunities of mesh-free methods and grid method advantages. Mesh-free finite elements 

method (MFEM) and natural element method [6, 7] appeared to be the first of new generation mesh-

free methods. 

Their main feature is that they occur to be usual (classical) Galerkin methods in the context of non 

time-dependent problems. To solve time-dependent problems Lagrange approach of medium 

description is applied: based on every time step a mesh is created, it identifies new structure of 

neighbors for each node of the domain. Equation system is solved again with the help of Galerkin 

method on newly-created grid. Thus, NEM and MFEM have some advantages of classical Galerkin 

method, that are simplicity of shape function in definition domain, continuity between elements, easy 

boundary conditions input. On the other hand they have all advantages of mesh-free methods, which 

means that natural element method form functions depend on node location. 
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2. Problem statement

Complete nonlinear problem of ideal incompressible fluid with free boundary is stated below. 

Ideal incompressible fluid flow described by Euler equation system and equation of continuity is 

specified in flow D computational domain represented by finite node set and limited by free surface 

0 and solid boundaries 
1 , 

2  and 
3 : 
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Here 1 2( , )x xx  – spatial coordinates, 1 2( , )u uu  – velocity vector, p  – pressure,   – density, 

1 2( , ) (0, )f f g  f  – external force vector. Node motion in the domain is describe by the following 

equation: 
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Dynamic condition 
atmp p  is fulfilled on free surface 

0 , impermeability condition 0 u n  is 

fulfilled on solid boundaries 
1 2 3, ,   , where 

1 2( , )n nn –the external normal to the fluid boundary. 

General formulation of viscous incompressible fluid flow problem is presented below. Newtonian 

viscous incompressible fluid flow described by Navier-Stokes equations and equation of continuity (2) 

is considered to occur in flow domain D. Navier-Stokes equations are presented in Euler’s formulation 

as follows: 
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Pressure p  and velocity vector u are the required functions in equation system (2),(4). Density  , 

external forces vector f  and dynamic viscosity coefficient   are the required parameters in equation 

system (2),(4). 

Boundary conditions for Navier-Stokes equations (2),(4) are as follows: as far as fluid is viscous , 

no-slip boundary condition 0, 1,2iu i   is fulfilled on solid boundaries 
1Г , 2Г  and 

3Г . Dynamic 

condition atmp p  is fulfilled on free surface 0Г  like in ideal fluid case. 

It is needed to set nodes location 0(0) x x  and distribution of unknown functions in whole flow 

domain 0( ,0) ( )u x u x , 0( ,0) ( )p px x  for time-dependent problem of both viscous and ideal fluids 

flows. 

3. Numerical computation

3.1.  Mesh-free finite elements method 

In 1994 L.Traversoni suggested natural elements [8] method should be used to solve plasticity 

theory problems. This method is a variation of Galerkin mesh-free method. Like Galerkin’s method 

unknown functions are approximated as follows: Tq N Q  , where ( , , ), 1,2iq u p i  , Q  – nodal 

values of unknown function, N  - interpolating form function. Later the method was adapted to solve 

fluid flow problems and became more popular as mesh-free finite elements method [9]. 
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Integrated form of weighted residuals method is used to create discrete equations system. Integrals 

taken are based on elements of extended Delone triangulation. Multitude of natural elements for each 

node and free boundary nodes at new time step are defined with the help of «sweep line» method и 

«alpha-shape» method respectively [10]. 

The essential difference of classical finite elements method from mesh-free method includes the 

necessity of computational mesh recreating at every time step. Each time new Sibson and Laplace 

interpolating functions [11,12] are constructed and rigidity matrixes are calculated, resulting equations 

are set up on a newly created mesh. Solution of multidimensional problem at fractional steps results in 

solution of individual equations with the help of conjugate gradient method. 

To define the structure of neighbors and its nodes and to calculate Sibson and Laplace form 

functions the domain is divided by Voronoi cells [12]. Computational mesh is needed for numerical 

integration while calculating the elements of rigidity matrix of resulting equations (weak form of 

medium motion equation is under consideration). 

At first time step the domain is divided with the help of Delone triangulation. Though, there is a 

necessity of computational mesh quality improvement in time-dependent problems (as soon as the 

mesh does not meet Delone criteria). If a mesh node location changes it is necessary to interpolate the 

variables values from the old “bad” mesh to the new upgraded one. Sibson and Laplace form functions 

are considered to be interpolation coefficients while recalculating the variables values. 

3.2.   Sibson and Laplace Interpolating functions 

Focused on natural elements concept Sibson’s interpolating functions are based on Voronoi 

diagrams of the first and second order and identified by polygons area ratio in two-dimensional case 

[11]: 
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Here N  – number of natural elements for node ),( 21 xxx ; )(xA  – Voronoi cell area of the first 

order, that includes node x , )(xIA – crossing area of Voronoi cell area of the second order x with

area )(xA  (refer with: Figure 1,а). 

Laplace interpolation is based on neighbors defining by having the domain divided with the help of 

Voronoi cells [12]. Node x  is related to Voronoi polygon with side number equals N . Let us set 

polygon sides lengths by NIsI ,1,  , and the heights put down from x  to Is , – by Ih . Then 

Laplace interpolation coefficients are as follows : 
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а)  b) 

Figure 1. Interpolation by: a)Sibson; b) Laplace 

This method of coefficients I  defining is easier and cost-effective compared to Sibson’s 

approach, as it does not require calculating polygons crossing area. Fig.1b shows Laplace interpolation 

architecture for two-dimensional case. 

Nonsibson’s interpolation has a specific feature that can be defined taking into consideration its 

basic properties. Many dissection polygons appear to be simplexes if the domain is divided by 

Voronoi cells for the specified node set. In the context of simplex polygons Laplace form functions act 

like linear functions. Form function behavior on some polygons is known beforehand. This fact can 

simplify integration problem and derivative calculation problem.  

Derivative of Sibson’s and Laplace’s form functions can be calculated by deriving equations (5) 

and (6) respectively. 

4. Numerical results

4.1.  Solution of interaction with obstacle above the fluid surface problem 

Computational domain contains reservoir with flat bottom and solid impenetrable walls filled with 

uniform viscous incompressible fluid and at initial time separated by thin impermeable wall that 

creates fluid level difference (refer with: Figure 2a). At initial time the wall starts moving upwards 

steadily with specified velocity while developing fluid column with zero velocity vector starts 

collapsing due to gravity.  

а) b)
Figure 2. a) Computational domain of the problem 4.1; b) Computational domain of the problem 4.2 

Peak load and maximum wave force experienced by horizontal obstacle are estimated in the 

context of different surface heights above free surface. Figure 3 shows flow patterns at different times 

for the case when height of horizontal surface quadruples layer depth. This parameter value was 

chosen because while dam collapsing maximum wave amplitude quadruples layer depth initial value 

at the bottom. It is worth noting that horizontal obstacle length was chosen in the way that moment of 

maximum wave amplitude coincides with the moment of wave collision with escarpment. 
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а) b) 

c) d) 

e)      f) 
Figure 3. Interaction between the wave and the horizontal obstacle 3500 nodes (variable time step) 

a) t=0.05s, b) t=0.279 s, c) t=346 s, d) t=0.461 s, e) t=0.694 s, f) t=0.95 s.

The figure shows that as soon as fluid hits an obstacle it fills the escarpment in the way that waves

impulses forming during motion along horizontal boundary occur until fluid reaches right wall of the 

reservoir. Then effect on the obstruction remains steady. It depends on flow velocity and flow 

vorticity. 

а) b) 
Figure 4. Chronograms of hydrodynamic load 

1 – hhg 4 ; 2 – hhg 6 ; 3– hhg 10 ; 4 – hhg 12

а) horizontal boundary of the escarpment; b) vertical boundary of the escarpment 
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In case horizontal obstacle is quite distant from free fluid surface fluid lapping at the obstacle is 

identified. As far as the fluid is viscous, no-slip condition is set at the solid boundary. While fluid 

flowing down the horizontal surface fluid particles are “released” from solid boundary and so called 

negative pressure zones occur at the “releasing” moment.  

4.2.  Solution of the problem of interaction with sledge located at the reservoir bottom 

The problem was solved by using the natural elements method in the context of nondimensional 

variables. Figure 2b shows computational domain scheme, where d  – underwater sledge height, 0d  – 

fluid depth above the sledge, A – arriving wave amplitude.

Figure 5 shows free surface evolution as time goes by. Wave blob occurs at the front boundary of 

the underwater sledge when the sledge experiences arriving wave uprush. Wave amplitude starts 

increasing, double bulge occurs on its surface, which later divides into reflected wave and transmitted 

wave. While moving along the channel transmitted wave shape transforms, the wave grows in the 

context of its amplitude and results in the clearly defined second wave that follows the first wave and 

drops behind the first wave because of the smaller amplitude and velocity. Principal waves are 

followed by disperse waves as well. It was mentioned in the experimental work [14]. 

а) b)
Figure 5. а) Free surface evolution; b) Vortex flows at the time t=15.945 s. 

Table 1 shows amplitudes of transmitted waves (second and third columns) and reflected wave 

(forth column). The reflected wave amplitude was measured at the node with abscissa 7x . The 

distance between the node with abscissa 7x  and front boundary of the ledge equals the distance 

between amplitude sensor and the sledge in experiment [13]. Transmitted wave amplitude was 

measured at the node with abscissa x=25 that corresponds to last sensor location in the experiment 

carried out [13]. The table shows great numerical correspondence to experimental results. 

Table 1. Wave amplitude 

Amplitude tA 1
 

tA 2 rA

Experimental results [16] ,0 2655  ,0 09  ,0 03  

NEM method calculation ,0 2703 ,0 0833  ,0 03036  

Fig.5a shows that there is wave ripple on the surface of fluid in abscissa variation range 

1110  x  (above the sledge). Vortex flow above the sledge (refer with: Figure 5b) results in wave 

ripple. Vortex existence is defined in experimental work [13] and in paper [14] though its impact on 
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transmitted waves and reflected waves is not researched yet. Small vortex of low intensity in front of 

front sledge boundary occurs. Figures 5,6 show flow lines while amplitude soliton wave 1825.0A  

moving above the sledge 5.0d . Vortex velocity rotor value above the sledge is negative, that 

means vortex rotating direction coincides with clockwise rotation.  

5. Summary

The paper presents calculation results of the problem of interaction between viscous and ideal fluid 

and different obstacles. The calculation results show that mesh-free method of finite elements can be 

considered to be applicable to solve the problems described above. It is worth mentioning the result 

presenting hydrodynamic loads. Load distribution diagrams are essential values to identify 

contractions lifetime affected by fluid and possible destroying consequences caused by wave uprushes 

affecting coast and bottom constructions. 

The research is based on state task No 2014/64, state project “Scientific researches organization”.  

References 

[1] Connor J and Brebbia K 1979 Finite Element Techniques for Fluid Flow (London and Boston: 

Newnes–Butterworth) 

[2]  Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (New York: Hemisphere Publ. 

Co.) 

[3] Liu G R 2003 Mesh free methods: moving beyond the finite element method (London: CRC 

Press) 

[4] Monaghan J. Smoothed particle hydrodynamics. Ann. Rev. Astronand Astrophysics. 1992. No 

~30, 543–574. 

[5] Frank A M 2001 Discrete models of incompressible fluid (Moscow: Fizmatlit) 
[6]  Facundo P. 2003 The meshless finite element method applied to a lagrangian particle 

formulation of fluid flows Partial Fulfillment of the Requirements for the Degree Doctor of 

Philosophy. Instituto de Desarrollo tecnologico para la industria quimica (INTEC) universidad 

nacional del litoral noviembre , 157 p. 

[7] Onate E and Idelsohn S.R and Zienkiewicz O C 1996 A finite point method in computational 

mechanics. Applications to convective transport and fluid flow International Journal for 

Numerical Methods in Engineering 39 3839 

[8] Traveroni L. Natural neighbor finite elements 1994 In International Conference on Hydraulic 

Enginnering Software. Hydrosoft Proceedings 2.Computational Mechanics Publications, pp. 

291–297.  

[9] Afanasiev K E, Karabtsev S.N., Rein, T.S., Stukolov, S.V. 2011 Numerical simulation of free 

boundary fluid flows by using mesh–free methods Trudy X vserossiyskogo sezda po 

fundamentalnym problemam teoreticheskoy I prikladnoy mekhaniki  

[10] Skvortsov A V 2002 Triangulyatsia Delone and its application (Tomsk: Tomsk University) 

[11] Sibson R.. Barnett In V. (ed.) A brief description a natural neighbor interpolation Interpret 

multivariate data. – Chichester: John Wiley, (1981)pp. 21–36. 

[12] Belikov, V.V., Ivanov, V.D., Kontorovich, V.K., Korytnik, S.A., Semenov, A.U. 1997 

Nonsibson’s interpolation– new method of inetrpolation of function’s values on undefined point 

system 37 11 

[13] Seabra-Santos, F J and Renouard D P and Temperville A M 1987 J. Fluid Mech. 176 117. 

[14] Liu P. L.-F. and Y. Cheng 2001 Physics of fluids 13 1660. 

RTEP2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 81 (2015) 012099 doi:10.1088/1757-899X/81/1/012099

7




