

УДК 621.762

СПЕКАНИЕ НАНОПОРОШКОВ МОЛИБДЕНА И ВОЛЬФРАМА

С.В. Матренин, Б.Б. Овечкин, Д.Д. Садилов

Томский политехнический университет E-mail: vm-s@mail.ru

Представлены результаты исследования процессов формования и спекания нанопорошков вольфрама и молибдена с добавками нанопорошка никеля, определены плотность, усадка, модуль упругости и микротвердость спеченных образцов. Установлено положительное влияние добавки нанопорошка никеля на процесс уплотнения прессовок при спекании, которое приводит к повышению механических свойств спеченных тугоплавких металлов.

Ключевые слова:

Тугоплавкие металлы, вольфрам, молибден, спекание, индентирование.

Key words:

Refractory metals, tungsten, molybdenum, sintering, indentation.

Введение

Тугоплавкие металлы и сплавы, благодаря высокой жаропрочности, находят широкое применение во многих отраслях промышленности: в космической технике, авиастроении, металлургии, энергетике и т. д. Так, вольфрамовые электроды используются в технологии сварки суперсплавов, из молибдена изготавливают стержни и вставки, применяемые при литье сталей и цветных металлов под давлением, а

также инструмент для горячей обработки давлением. Сплавы на основе тугоплавких металлов прогнозируются в качестве альтернативных суперсплавам [1]. В технологии получения нанопорошков путем переконденсации в плазменных аппаратах используются вольфрамовые и молибденовые тигли, которые нагревают тепловым излучением наружного радиационного элемента или электронным пучком [2].

Заготовки и изделия из тугоплавких металлов и сплавов производят практически только методами порошковой металлургии. Широко распространена технология, включающая получение порошков вольфрама и молибдена путем восстановления соответствующих ангидридов, формование порошков в штабики, и последующее двухстадийное спекание [3]. Предварительное спекание вольфрамовых штабиков ведут при 1150...1300 °C, а молибденовых – при 1100...1200 °C в муфельных электропечах в среде водорода. После выдержки в течение 30...120 мин получают заметно упрочненные штабики, которые затем подвергают высокотемпературному спеканию. Для этого требуется нагрев вольфрамового штабика примерно до 2900...3000 °C, молибденового – до 2200...2400 °C. Такую высокую температуру получают путем непосредственного пропускания электрического тока через штабик. Окончательно плотность вольфрамовых штабиков достигает 17,5...18,5 г/см³ (пористость

10...15 %), пористость молибденовых штабиков равна 6...10 %. Существенным недостатком такой технологии спекания является ее двухстадийность, длительность и высокая энергоемкость. В связи с этим, исследование активирования спекания тугоплавких металлов с целью повышения технологичности процесса, увеличения плотности спеченных изделий, получения более мелкозернистой структуры и улучшения их эксплуатационных характеристик является весьма важной задачей.

В [4] показано, что эффективным методом активирования процесса спекания является применение нанодисперсных порошков (НП). При уменьшении линейных размеров частиц порошков менее 300 нм качественно изменяются их свойства: устойчивым становится иной тип кристаллической структуры, снижается температура плавления и температура фазовых переходов, повышается теплоемкость и др. НП обладают повышенной диффузионной и химической активностью, обусловленной значительной долей атомов, расположенных в поверхностном слое наночастиц [5, 6]. В связи с этим, поведение НП при формовании и спекании существенно отличается от поведения их крупнодисперсных аналогов. Так, в [7] показано, что размер частиц железа и никеля, при котором они становятся бездислокационными, равен, соответственно, 23 и 140 нм. Отсюда следует, что при прессовании НП отсутствует пластическая деформация частиц, и, соответственно, прессовки будут иметь пониженную плотность.

Целью работы было исследование процессов формования и спекания нанопорошков вольфрама и молибдена с добавками нанопорошка никеля и оценка свойств спеченных материалов.

Эксперимент

Для исследований использовали электровзрывные НП W, Мо и Ni с диаметром частиц до 100 нм [8]. НП отжигали в вакуумной печи при температуре 750 °C в течение 2 ч. Порошковые шихты получали мокрым смешиванием НП W и Mo с добавкой 1 мас. % НП Ni в этиловом спирте и пластификацией смесей каучуком. Подготовленные шихты формовали методом одноосного прессования, давление прессования составляло 300 МПа. Прессовки спекали в вакууме (~10⁻⁴ мм. рт. ст.) и в аммиачной плазме тлеющего разряда при температуре 1174, 1314, 1450 °C. Стабильность поддержания температуры во время изотермической выдержки при спекании в вакуумной печи составляла ± 2 °C, при спекании в тлеющем разряде – ± 10 °C. Такие значения обусловлены характеристиками первичного датчика температуры ТВР и программного регулятора «Протар». Для определения температуры при спекании в тлеющем разряде использовали пирометр «Проминь». Время изотермической выдержки составляло 1 ч.

Использовали следующие методики исследования: измерение плотности прессовок и спеченных образцов с помощью гидростатического взвешивания, изучение микроструктуры, остаточной пористости (металлографический микроскоп «Альтами- М»). Индентирование осуществляли с помощью прибора Nano Indenter G 200. В качестве индентора использовали пирамиду Берковича, нагрузка составляла 500 мН (50 г). Конструкция прибора позволяет выводить диаграмму внедрения индентора на монитор в режиме реального времени. Первичные данные – нагрузка и глубина внедрения пирамиды. По диаграмме внедрения прибор автоматически рассчитывал модуль упругости $E_{\rm IT}$ и микротвердость $H_{\rm IT}$ в соответствии со стандартом ISO 14577. Вдавливание индентора в материал вызывает локальную упругую и пластическую деформацию и приводит к образованию соответствующего отпечатка на определенной глубине *h*. После снятия нагрузки упругая деформация восстанавливается, что позволяет определить упругие свойства материала.

Экспериментальная первичная кривая «нагрузка – внедрение» (диаграмма внедрения), непрерывно получаемая в процессе индентирования, показана на рис. 1. По диаграмме определяются следующие величины: пиковая нагрузка и глубина внедрения индентора $P_{\rm max}$ и $h_{\rm max}$, остаточная глубина после разгрузки $h_{\rm f}$, и наклон начальной части кривой разгрузки S = dP/dh, который характеризует упругую жесткость контакта. При использовании в качестве

Серия 5. Инженерные науки

индентора трехгранной пирамиды Берковича твердость исследуемой поверхности *Н* определяется по следующей формуле:

$$H = \frac{P}{A} = 0,00387 \frac{P}{h_{\text{max}}^2},$$

где *P* – нагрузка, прилагаемая к испытуемой поверхности, H, *A* – площадь отпечатка под нагрузкой, мм², *h*_{max} – глубина внедрения индентора, мм.

Модуль упругости исследуемого образца *E* определяется из приведенного модуля *E_r*, который рассчитывается по формуле:

$$E_r = \frac{(S\sqrt{\pi})}{2\beta\sqrt{A}}.$$

Здесь β является константой, которая зависит от геометрии индентора. Для осесимметричного индентора $\beta = 1$, для индентора с квадратным сечением (пирамида Виккерса) $\beta = 1,012$, для индентора с треугольным сечением (пирамида Берковича) $\beta = 1,034$. Окончательно модуль упругости исследуемого материала *E* рассчитывается с помощью выражения:

$$\frac{1}{E_r} = \frac{(1-v^2)}{E} + \frac{(1-v_i^2)}{E_i},$$

где v – коэффициент Пуассона исследуемого материала, E_i и v_i – модуль упругости и коэффициент Пуассона материала индентора. Для алмаза E_i = 1141 ГПа и v_i = 0,07.

Таблица 1. Плотность прессовок

№	Состав	$ ho_{\Pi}$, г/см ³	θ_{Π} , %
1		6,81	66
2	Mo-Ni	6,63	64
3		6,70	65
4		6,67	65
5	Mo	6,64	65
6		6,63	65
7		11,57	60
8	W	11,57	60
9		11,64	60
10		12,42	64
11	W-Ni	11,75	61
12		11,74	61

Серия 5. Инженерные науки

В таб. 1 приведены экспериментальные значения плотности прессовок *ρ*_п и их относительной плотности *θ*_п. Было получено по три прессовки каждого состава при одинаковом давлении прессования. Рассчитанные значения плотностей затем усреднялись.

На рис. 2 и в табл. 2 приведены результаты измерения плотности ρ_{cn} , θ_{cn} и усадки У спеченных прессовок, а также данные испытаний на индентирование.

Рис. 2. Зависимость относительной плотности образцов от температуры спекания

Температура спекания 1175 °С соответствовала гомологической $T_{cn}/T_{nn} = 0,4$ для W и 0,5 для Мо, 1313 °С – 0,45 и 0,55, 1450 °С – 0,5 и 0,6, соответственно.

N₂	Состав	<i>t</i> _{сп} , °С	$ ho_{ m cn}$, г/см ³	<i>θ</i> _{сп} , %	У, %	<i>Е</i> _{ІТ,} ГПа	$H_{\rm IT,}$ МПа
1	Mo-Ni	1450	9,39	92	11,2	264,4	3178
2		1313	8,25	86	8,2	_	—
3		1175	7,65	75	5,2	_	_
4	Мо	1450	8,17	80	7,3	203,2	2315
5		1313	7,67	74	5,4	-	_
6		1175	7,12	69	2,8	-	_
7	W	1450	11,53	60	0,2	-	_
8		1313	11,56	60	0,3	-	_
9		1175	11,62	60	0,4	-	_
10		1450	16,98	88	10,5	322,1	3426
11	W-Ni	1313	15,64	80	8,4	_	_
12		1175	14,47	74	7,0	_	_

Таблица 2. Свойства образцов, спеченных в вакуумной печи

В табл. 3 приведены результаты измерения плотности и усадки прессовок, спеченных в аммиачной плазме тлеющего разряда, их модуль упругости и микротвердость.

№	Состав	<i>t</i> _{сп} , °С	$ ho_{ m cn}$, г/см 3	$\theta_{\rm cn}, \%$	У, %	<i>Е</i> _{IT,} ГПа	<i>Н</i> _{ІТ,} МПа
1	Mo-Ni	1450	7,86	77	5,3	257,4	3063
2	Mo		6,83	66	0	172,7	1769
3	W		11,87	61	0	-	-
4	W-Ni		16,33	84	10,4	394,1	4131

Таблица 3. Свойства образцов, спеченных в плазме тлеющего разряда

Серия 5. Инженерные науки

На рис. 3. приведены диаграммы внедрения, полученные на спеченных образцах. По наклону кривой разгрузки можно видеть, что наиболее жесткими являются образцы, содержащие добавку никеля. Отпечатки с минимальной глубиной внедрения индентора, которая определяет площадь контакта и твердость материала, также получены на образцах, содержащих никель. Результаты испытаний образцов из вольфрама, не содержащих добавку никеля, не указаны, поскольку данные образцы имели высокую пористость после спекания при температуре 1450 °C.

Рис. 3. Диаграммы внедрения образцов: 1) W-Ni, спекание в плазме; 2) W-Ni, вакуумное спекание; 3) Мо-Ni, спекание в плазме; 4) Мо, спекание в плазме

Обсуждение результатов

При спекании в вакуумной печи и в аммиачной плазме тлеющего разряда образцы вольфрама, не содержащие добавку никеля, практически не уплотнились. Очевидно, что температура 1450 °C (0,5 $T_{\rm пл}$) недостаточна для твердофазного спекания нанопорошка вольфрама. Молибденовые прессовки спекались при указанных выше температурах, однако имели значительную пористость. Добавление 1 мас. % Ni в виде НП в исходную шихту существенно активировало процесс спекания. Это обусловлено появлением при температуре 1450 °C жидкой фазы – расплава никеля, которая растворяет наночастицы вольфрама в приграничном слое. При изотермической выдержке происходит исчезновение жидкой фазы за счет диффузионных процессов и растворения вольфрама в никеле. Жидкофазное спекание, реализуемое по подобному механизму, резко активирует процесс уплотнения вследствие сближения центров спекаемых наночастиц вольфрама.

Для объяснения активированного спекания НП авторами работ [9, 10] была предложена флуктуационная модель спекания, суть которой заключается в том, что начальная стадия спекания определяется флуктуационным плавлением наночастиц, термодинамические параметры которых подвержены флуктуациям. В [11] было показано, что данная модель хорошо описывает начальную стадию спекания при условии, что флуктуационно расплавившаяся частица объединяется с одной соседней частицей максимального объема.

Таким образом, активированное спекание НП W и Mo в присутствии малых добавок НП Ni может быть описано в рамках флуктуационной модели: расплавляющиеся наночастицы никеля объединяются с наночастицами вольфрама и молибдена, протекают диффузионные процессы, происходит растворение вольфрама и молибдена в никеле в приграничном слое наночастиц с исчезновением жидкой фазы.

Сравнение результатов спекания прессовок из НП W-Ni в вакууме и в аммиачной плазме тлеющего разряда показало, что во втором случае образцы при примерно одинаковой плотности имели более высокие значения модуля упругости и, особенно, микротвердости. Модуль упругости спеченного легированного никелем вольфрама близок к табличному (398 ГПа) [12]. Этот эффект объясняется тем, что спекание порошковых прессовок в плазме тлеющего разряда в значительной мере активируется прохождением через спекаемый объект

электрического тока и бомбардировкой его поверхности ионами плазмы, что было показано в работах [13, 14].

Выводы

Исследованы процессы формования и спекания нанопорошков вольфрама и молибдена с добавками нанопорошка никеля, определены плотность, усадка, модуль упругости и микротвердость спеченных образцов. Установлено положительное влияние добавки нанопорошка никеля на процесс уплотнения прессовок при спекании, которое приводит к повышению механических свойств спеченных тугоплавких металлов.

Показано, что образцы, полученные прессованием нанопорошка вольфрама с добавкой нанопорошка никеля и спеканием в плазме тлеющего разряда, имеют более высокие значения модуля упругости и твердости (394,1 ГПа и 4131 МПа) по сравнению с образцами, спеченными в вакуумной печи (322,1 ГПа и 3426 МПа).

Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг., проект НК – 616П(8), ГК № П-920.

СПИСОК ЛИТЕРАТУРЫ

- 1. Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок / под ред. Ч.Т. Симса, Н.С. Столоффа, У.К. Хагеля. Пер. с англ. В 2-х книгах: Кн. 2 / под ред. Р.Е. Шалина. М.: Металлургия, 1995. 384 с.
- 2. Стороженко П.А., Гусейнов Ш.Л., Малашин С.И. Нанодисперсные порошки: методы получения и способы практического применения // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 27–39.
- 3. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.: Металлургия, 1991. 432 с.
- 4. Матренин С.В., Ильин А.П., Слосман А.И., Толбанова Л.О. Спекание нанодисперсного порошка железа // Перспективные материалы. 2008. № 5. С. 81–87.
- 5. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УроРАН, 1998. 198 с.
- 6. Ремпель А.А. Нанотехнологии, свойства и применение наноструктурированных материалов // Успехи химии. – 2007. – Т. 76. – № 5. – С. 474–500.
- 7. Грязнов В.Г., Капрелов А.М., Романов А.Е. О критической устойчивости дислокаций в монокристаллах // Письма в Журнал технической физики. 1989. Т. 15. Вып. 2. С. 39–44.
- 8. Назаренко О.Б. Электровзрывные нанопорошки: получение, свойства, применение / под ред. А.П. Ильина. – Томск: Изд-во Томского политехнического университета, 2005. – 148 с.
- 9. Степанов Ю.Н., Алымов М.И. Расчет скорости усадки на первой стадии спекания компактов из ультрадисперсных порошков // Физика и химия обработки материалов. – 2001. – № 6. – С. 76–78.
- 10. Степанов Ю.Н., Алымов М.И., Мальтина Е.И. Ультрадисперсные металлические порошки: модель начальной стадии спекания // Металлы. 1995. № 1. С. 127–132.
- 11. Степанов Ю.Н. Закономерности объединения наночастиц при их флуктуационном плавлении на начальной стадии спекания // Российские нанотехнологии. 2007. Т. 2. № 1. С. 133–135.
- 12. Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. М.: МИСИС, 2005. 432 с.
- 13. Слосман А.И., Матренин С.В. Электроразрядное спекание керамики на основе диоксида циркония // Огнеупоры. 1994. № 9. С. 24–27.
- 14. Матренин С.В., Слосман А.И., Мячин Ю.В. Спекание железотитанового сплава в аммиачной плазме тлеющего разряда // Металловедение и термическая обработка металлов (МИТОМ). 2007. № 6. С. 17–23.

Поступила 30.10.2011 г.

Серия 5. Инженерные науки