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Abstract 

Scheme of isotopically enriched SF6 to elemental sulfur with orthorhombic modification conversion is offered. This scheme 
includes SF6 reduction to Li2S by using lithium. The yield of isotopically enriched sulfur is not less than 97 % with chemical 
purity not less than 99.9 %. The results which show the dependence of the experimental frequencies in the vibrational spectra on 
the molecular weight of the sulfur isotope have been obtained. 
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1. Introduction 
 

Natural sulfur consists of a mixture of stable isotopes with mass numbers 32, 33, 34 and 36, the relative content 
of which is 95.04%, 0.75%, 4.20% and 0.015%, respectively1. Isotopes of sulfur are applied in biology2, geology3, 
geochemistry4,5, ecology6-8, agrochemistry9, archeology10 and medicine11.  

Sulfur hexafluoride is used as a working substance in the technology of centrifugal separation of the sulfur 
isotopes. Parameters of technology of centrifugal separation and properties of SF6 are known12. After obtaining SF6 
we should convert this compound into elemental sulfur which is suitable for storing and selling. This process should 
be done with the next requirements: to minimize the losses, to eliminate the isotope dilution and to provide 
necessary chemical purity. 

It is known that sulfur has a lot of allotropic modifications and crystal forms, formation of which depends on the 
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methods of obtaining and conditions of storage13. For this reason, it is desirable to obtain the sulfur modification, as 
a commercial form which is stable at a room temperature, well packed and lossless and also capable of being the 
primary form to produce other allotropic forms of sulfur and commercial products. An orthorhombic modification of 
sulfur ( -S) fully meets all these requirements. 

The purpose of this research was to develop the method of obtaining isotopically enriched elemental sulfur from 
its hexafluoride in form -S. 

For conversion SF6 to S it is possible to use microwave or plasma-chemical methods and also reduction reactions 
of SF6 by metals or their oxides and hydrides14-18. The main disadvantage of microwave and plasma-chemical 
methods is the complexity of the hardware design and low productivity. While using, for the oxides (CaO, MgO, 
REE2O3 and others) or calcium hydride (CaH2) reduction, the gaseous sulfur-containing products (SO2, H2S, SF4 and 
other compounds of sulfur) are the result of the reaction. This will require additional steps of collecting the product 
gas recovery, separation of isotopically enriched sulfur from the absorbing solution and its subsequent purification. 
The increasing number of stages complicates the work of processing and does not allow to exclude losses of the 
isotopically enriched sulfur which is very expensive. 

In paper [20] applying a differential thermal analysis method (DTA) it was found that the vast majority of metals 
reacts with SF6 at a high speed in the range of 500 - 600 С with the formation of only solid phase products - sulfides 
and fluorides of metals used in the reduction reaction 

We used lithium as a reducing agent for processing of the hexafluoride. This reaction is well known21. Also while 
choosing its relatively low vapor pressure at the temperature of the reduction reaction and thus a smaller metal 
removal from the reaction zone to the cold zone of the reactor was taken into account.  

In addition, in this paper we present the IR spectra and the Raman spectra of the polycrystalline of -32S, -33S, 
-34S, which were obtained at a room temperature. 

 
2. Experimental 
 

In this work the commercial SF6 (with content of hexafluoride not less 99.9 %), metallic Li (spectra pure), carbon 
tetrachloride CCl4 (analytical grade), KJ (analytical grade), I2 (analytical grade), HCl (analytical grade), toluene 
(analytical grade) were used. The experimental work used isotopes of sulfur with an isotopic purity: 32S = 99.9 %; 
33S = 99.4 %; 34S = 99.9 %. 

The diffractograms were obtained by using diffractometer D8 DISCOVER (СuK - radiation, λ = 1,54056 Ǻ). 
The content of the impurities in elemental sulfur was analyzed by using atomic emission spectrometry with 
inductively coupled plasma iCAP6300 Duo. 

IR spectra of the samples of polycrystalline α-S in KBr tablets were obtained by using FTIR 5700 spectrometer 
Nikolet at a room temperature with the resolution of 2 cm-1. Raman spectra were recorded by using spectrometer 
Nikolet 5700 with the Raman module at a room temperature with the resolution of 1 cm-1. In both situations the 
laser Nd:YAG ( =1064 nm, 514 mW) was used. 

The laboratory unit for SF6 reduction by lithium is shown in Fig. 1. The unit consists of the reactor with the 
cooling cover, the volume of the unit is 2.2 l. The unit also has the molybdenum liner with the thickness around 0.1-
0.2 mm for preventing the reactor from corrosion. 

 

 
Fig. 1. The laboratory unit for SF6 reduction by lithium: 1 – lithium; 2 – rangette; 3 – molybdenum liner; 4 – capacity with SF6; 5 – vacuum 

gauge 
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The amount of lithium was calculated with an excess of 30-40 %, lithium was placed in a molybdenum liner, then 

the reactor was sealed and evacuated to 10-3 mm Hg. After checking the impermeability of the system 40-50 mm Hg 
SF6 was placed into the reactor. This prevented the lithium sublimation during heating and also allowed to define the 
beginning of the reaction. After that the reactor was heated by using the rangette. 

The exothermic reduction reaction of SF6 started under heating of the reactor bottom to red heat and proceeded 
with the formation of solid-phase sulfide and lithium fluoride: 

8Li + SF6  Li2S + 6LiF         (1) 

After starting the reaction the heating was turned off and put into the reactor SF6 at such a rate that the reaction 
would not stop and the reactor would not heat to 1000 °C. The reactor was cooled after the reaction. Then the 
Lugol's solution in 2 N HCl, with a 100% excess of the stoichiometric was put into the reactor using the residual 
vacuum. 

The mixture obtained was left for 12 hours in the reactor at a room temperature. The oxidation reaction of 
sulphide sulfur proceeded with an elemental sulfur formation. 

Li2S + I2  2LiI + S          (2) 

The suspension was filtered. The precipitate was dried and milled in the mortar. After that the elemental sulfur 
was extracted by using CCl4 and the apparatus of Soxhlet. For obtaining chemically pure product, the elemental 
sulfur was cleaned by vacuum sublimation. 

The sulfur after sublimation was recrystallized from toluene for obtaining the crystals of isotopically pure 
elemental sulfur with the orthorhombic modification. 250 mg of sulfur were taken for each 10 ml of toluene and 
then were dissolved by heating. The -S was crystallized under cooling to 20 0 C from the solution. The yield of 
crystals -S was not less than 99% 

The roentgenogram of α-34S which was obtained by using this method is shown in Fig. 2. The roentgenogram 
includes the reflections of crystallographic planes of orthorhombic sulfur. The results of elemental analysis of -S34 
are shown in table 1. 

 

 
Fig. 2. The XRD pattern of isotopes α-34S 

 
Table 1. Results of the quantitative chemical analysis of impurities in -S34 

 
Element Content, ppm Element Content, ppm 

Al  10 Li  10 
B  5 Fe  5 
C  5 Mg  8 
Ca  9 Na  7 
Cr  5 Cu  2 

 
Sulfur isotopes obtained in this way have a chemical purity of more than 99.9%. The yield of elemental sulfur is 

not less than 97 %.  
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Fig. 3 shows the IR spectra, obtained for the polycrystalline samples of the α-32S, α-33S, α-34S and α-natS isotopes. 
According to the previous study22, the observed IR spectra absorption corresponds to the valence vibration 
(stretching vibration) - 5. Fig. 3 shows that the position of the lines of oscillation ( 5) for the α-33S and the α-34S 
isotopes are shifted to the low-energy side, and the line corresponding to the α-32S isotope has a high-energy shift 
with respect to the spectrum of α-natS. 

This behavior can be explained by the fact that the positions of the oscillation frequencies in the spectra directly 
affect the mass of the atoms oscillating around the equilibrium positions in the crystal lattice. This dependence has 
the form:  =  m-½. 

 

  
Fig. 3. IR spectra of isotopes α-32S, α-33S, α-34S and α-natS 

 
Isotopic dependence of the oscillation frequencies of α-S in the IR spectra are shown in Fig. 4. The line shows the 

calculated dependence of the absorption frequency on the atomic mass of the α-S isotope (  = 2632.9 m-½), which 
correlates with experimental values. 

 

  
Fig. 4. Isotopic dependence of the oscillation frequencies of α-S in the IR spectra 
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Fig. 5 shows the Raman spectra obtained for polycrystalline samples of the isotopes of α-S. In the spectra of the 
isotopes all of the absorption bands that are characteristic of α-S were observed, which, according to the isotope 
shift, is indicated by:  =  m-½. 

Fig. 6 shows the experimental vibrational frequencies in the Raman spectra of the atomic mass of the α-S isotope. 
As shown in the figure, dependencies of the position of crest of bands in the Raman spectra of sulfur isotopes are a 
linear function of the atomic masses of the isotopes. 

 
Fig. 5. Raman spectra of the isotopes α-32S, α-33S, α-34S and α-natS 

 

 
Fig. 6. Isotopic dependence of the oscillation frequencies of α-S in the Raman spectra 

 
These linear relationships make it possible to know the frequency of isotopes α-32S, α-33S and α-34S to determine 

the oscillation frequency in the IR and Raman spectra of the sulfur isotope α-36S, for which it is difficult to obtain 
vibrational spectra due to its high cost connected with its low content in the natural sulfur. 
 
3. Conclusion 

 
1. IR spectra and Raman spectra of the polycrystalline isotopes α-32S, α-33S and α-34S have been obtained. 
2. It has been found that experimental frequencies of the vibrational spectra of the isotopes of sulfur decrease in a 

linear manner with an increasing mass of the isotope. From the experimental correlations, the oscillation frequencies 
for the isotope α-36S have been determined. 
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