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Abstract 

This paper describes the adsorption of CO2 on pores in natural erionite exchanged with aqueous solutions of Na+, Mg2+, and Ca2+ 
salts at different concentrations, variable time and temperature of treatment. Experimental data of CO2 adsorption were treated by 
the Freundlich and Langmuir equations. Complementarily were evaluated standard adsorption energies and the degree of 
interaction of the gas with the zeolite; the evolution of isosteric heats of adsorption was analyzed. The exchange with Na+ favors 
the creation of emergent pores thus causing an increase of the adsorption capacity for CO2. The presence of Na+ at micropore 
entrances causes an increased adsorption into the nanocavities and on the external area of the ion-exchanged zeolites. The 
development of nanopores in erionite was evaluated through the Barrett-Joyner-Halenda and NLDFT methods. Depending on the 
conditions of the exchange treatment, Na+ was found to be most favorable, well distributed, and accessible for N2 adsorption.  
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1. Introduction 

Carbon dioxide (CO2) has become an important global issue due to the gradual increase in the atmospheric 
concentration of CO2 resulted from fossil fuel combustion and the link between an increase in the CO2 concentration 
in the atmosphere and global climate changes. Therefore, it is necessary to reduce CO2 concentration significantly 
from the current level1. Up to now, various technologies, such as amine solutions for absorption, membrane 
separation and adsorption-based separation were employed to stabilize the CO2 concentration in the atmosphere by 
controlling the emission of CO2 from various sources2-4. Adsorption, in fact, has become the state of the art 
technology for the separation and recovery of CO2 

5. Although the conventional sorbents such as activated carbons 
and zeolites possess relatively high CO2 adsorption capacities at room temperature, the adsorbed amounts of CO2 on 
these adsorbents will decline rapidly with increasing temperature. Additionally, the adsorption selectivity for CO2 on 
activated carbons and zeolites in the presence of water vapor will become very poor6. At high temperatures, 
hydrotalcites can adsorb CO2, but their adsorption capacities towards CO2 are, in general, low. Basic metal oxides 
such as MgO and CaO have extremely large absorption capacities for CO2 but the regeneration of these absorbents is 
performed at higher temperatures, resulting in severe energy penalties7. Therefore, the development of efficient 
adsorbents is of utmost importance for CO2 capture and separation. Among the suggested materials for adsorption of 
CO2 bests itself are zeolites of ERI type, outstanding by their high adsorption capacity, accessibility, purity and, 
especially, by possibility to increase their adsorption capacity by incorporating certain cations through ion exchange, 
and via nanodeposits formation in the internal structure of this zeolite. The replacement by ion exchange of Na+ ions 
in natural erionite by either Ca2+ or H+ ions increases the capacity (i.e. the accessible pore volume). Ion exchange 
(via a salt) and dealumination (with acid treatments) of erionite lead to the formation of a secondary porosity (i.e.,  
mesopores are created)8. The cavities in erionite after an ion exchange process can accommodate metal ions and 
clusters produced by a subsequent reduction reaction9-10. Cation type and location of water molecules within the 
zeolite structure are still under investigation11. The objectives of this study are to compare the experimental results 
for CO2 adsorption obtained by the dynamic method in erionite zeolites exchanged with Na+, Ca2+ and Mg2+ to 
determine the order of selectivity with respect to this gas in the zeolites studied. With this purpose in mind, CO2 
adsorption isotherms on microporous ERI solids at different temperatures were measured through the gas 
chromatographic (GC) peak maxima technique12. In this paper, we are also reporting isosteric heats of adsorption 
evaluated at different CO2 loadings. Finally, we examine sorption capacities and isosteric heats of adsorption in 
terms of the structural properties of our assortment of ERI zeolites. To follow, for this study were used methods of 
X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), High 
Resolution Adsorption Studies (HRADS), and gas chromatography.  

2. Experimental Section 

Mexican natural zeolites proceeding from Agua Prieta in the State of Sonora, Mexico were used in this work. The 
ERIN label accounts for the natural erionite sample, which is free of any treatment. Exchanged erionite samples 
ERICaX, ERIMgX, and ERINaX were prepared from ERIN precursor and exchanged either X=1, X=2, or X=3 times 
with 0.1 N solutions of the corresponding cation chloride salts (i.e. CaCl2, MgCl2, NaCl) at 50 °C for 6 h. N2 and He 
ultrahigh purity gases (> 99.999%, INFRA Corp.) were employed for the textural sorption studies of natural and 
exchanged erionites. 

XRD patterns were determined by means of a Siemens D-500 diffractometer employing a nickel filtered Cu K  
radiation and compared with the corresponding JCCPD files for identifying the phases presented in the erionite 
samples. Scanning Electron Microscopy images were obtained from a Vega Tescan, model JSM-5300 electron 
microscope equipped with an energy dispersive spectrometer (EDS) probe, which allows a semiquantitative 
determination of local composition at the nanoscale level. All N2 adsorption isotherms were measured at the boiling 
point of liquid N2 (76.4 K at the 2200 m altitude of Puebla City, México) in an automatic volumetric adsorption 
system (Quantachrome AutoSorb-1LC). N2 adsorption isotherms were determined in the interval of relative 
pressures, p/p0, extending from 10-5 to 0.995. The saturation pressure, p0, was continuously registered in the course 
of the adsorption-desorption measurements. Powder with particle sizes corresponding to 60-80 mesh were sampled 
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from all specimens under analysis. Prior to the sorption experiments, samples were outgassed at 623 K during 20 h 
at a pressure lesser than 10-6 mbar. 

Experiments on CO2 adsorption over substrates were performed on a gas chromatograph Gow-Mac 350 equipped 
with a thermal conductivity detector. Chromatographic columns are stainless steel (with internal diameter of 5 mm 
and length of 50 cm) and were packed with zeolite granules equivalent to mesh sizes 0.250 mm. Prior to adsorption 
of the gas, each sample was pretreated in situ under flowing He at 573 K. Subsequently, various volumes of CO2 
were injected into the column to measure the retention time. The adsorption isotherms of the gas on the zeolites are 
measured at various temperatures (463, 493, 523, 553 and 583 K); assessments of adsorbed amount function of 
pressure are effected applying the method of maximum chromatographic peaks (GC peak maxima method) using 
helium (30 cm3min-1) as carrier gas. The isosteric heat of adsorption at low degrees of coverage was calculated from 
the experimental adsorption isotherm data using the Clausius-Clapeyron equation.  

Data corresponding to the adsorption of CO2 on erionite samples were fitted to standard Freundlich isotherm 
models through linear regression in order to determine the adsorption parameters pertinent to each of the above 
approaches. The Freundlich adsorption equation can be written as: 

a = KF + p1/n  (1) 

where a is the adsorbed amount (mmol g-1), KF is the Freundlich adsorption constant, and n is an exponential factor.  
All CO2 adsorption data were fitted to standard Langmuir adsorption equation through linear regression. From 

gas adsorption data at low pressures, it is possible to evaluate the Henry constants (KH) at different temperatures for 
the series of adsorbent-adsorptive pairs employed in this work according to the following expression13: 

KH=limp→0 (a/amp)  (2) 

where a represents the amount adsorbed on the solid walls at pressure p, while am is the monolayer capacity 
evaluated from the Langmuir equation: 

θ= a/am= Kp/1+Kp  (3) 

where K am = KH is, something that can be tested graphically by plotting 1/a versus 1/p: 

1/a = 1/am + 1/amKp  (4) 

Standard adsorption energies (− U0) can be found from the temperature dependence of Henry constants KH (at 
low pressures KH  KF), a relationship that is assumed to be consistent with a traditional van’t Hoff form: 

(∂ ln KH/∂T) = U0/ RT2; KH = K0 exp_(− U0/ RT) (5) 

where U0 = H0 + RT; H0 is the standard adsorption enthalpy, R the universal gas constant, and K0 is van’t Hoff’s 
pre-exponential factor. 

The isosteric heat of adsorption, qst (kcal mol-1), at different adsorbate loadings can be evaluated from the 
adsorption isotherms data through a Clausius-Clapeyron type equation14: 

∂ ln p /∂T a = qst a/RT2  (6) 

where p and T are the equilibrium pressure and temperature at a given adsorbate loading (a). 

3. Results and discussion 

The texture properties and chemical composition of the zeolites are reported in Tables 1 and 2. The results of 
texture (ASB, BET specific surface area; ASL, Langmuir specific surface area; ASt, t-plot surface area; CB, BET 
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constant; V , volume adsorbed at p/p0 = 0.95 and expressed as the volume of liquid N2 (Gurvitch rule); W0, volume 
micropore estimated from t-plots, and Vmeso = V  - W0, and mesopore volume) are listed in Table 1. The interesting 
features of ion-exchanged zeolites are their large surface area and micropore volume. Additionally it is observed that 
the BET constant values (CB) are negative, thus indicating the inadequacy of the micropore filling mechanism given 
the continuous growth of the adsorbed layer on the surface of these substrates15. The behavior of the textural 
parameters of natural and exchanged erionites obey the following sequence: ASL: ERINa: 3>2>1; ERICa: 2>1>3; 
ERIMg: 2>1>3. While V : ERINa: 3>2>1; ERICa: 2>1>3; ERIMg: 2>1>3. Finally, W0t: ERINa: 3>2=1, ERICa: 
2>1>3, and ERIMg: 2>1>3. There exists an almost total concordance between the tendencies of the ASL, V  and W0t. 
The EDS chemical compositions of all erionite substrates are listed in Table 2. This Table reveals that the amount of 
cation present in each zeolite increased, once the corresponding ion exchange has been carried out. 

The dynamic chromatographic method was used for evaluating the adsorption isotherms from injection pulse data 
proceeding from the elution curves of the adsorptives on the zeolites under study. These CO2 adsorption isotherms 
were measured in a region of low adsorbate concentrations; hence, adsorption on the mesopore surface can be 
practically neglected. Consequently, the parameters that characterize the microporous structure of our erionite 
adsorbents have been calculated from the CO2 adsorption isotherms, without introducing any correction for 
adsorption on the mesopore surface. CO2 adsorption isotherms at different temperatures on ERIN and ERINa 
zeolites are presented in parts a-d of Figure 1, while the isotherms of ERICa and ERIMg zeolites are presented in 
parts a-f of Figure 2. Complementarily were evaluated standard adsorption energies -ΔU0 while the degree of 
interaction of the gas with the zeolite was analyzed by the evolution of isosteric heats of adsorption -qst. Values of 
Freundlich constants KF and n, Henry constants KH, Langmuir monolayer capacity am, adsorption energies -ΔU0 and 
isosteric heat of adsorption -qst are given in Table 3. From this Table it is established that the highest values 
purchase for the monolayer capacity at 473 K is obtained by the sample ERICa2, while lower values acquires the 
sample ERIMg3. On the other hand, treatments with NaCl at different contact times and concentrations produce 
increases in adsorptivity, proving to be ERINa2 most favored adsorbent, see Table 2. 

The Langmuir approach works reasonably well for all but one case: that corresponding to adsorption at 588 K on 
ERINa1, ERICa3 and ERIMg3. Similar behaviors are presented in ERINa2 at 623 K and ERICa2 at 503 K. The 
values of the Henry and Langmuir constants (i.e., KH and am) are listed in Table 3. The temperature dependence of 
the monolayer adsorption capacity (am), derived from the Langmuir plots, have the lowest values in ERIMg3 and 
ERIMg2 zeolites; on the contrary the highest values correspond to ERINa2 and ERINa3 zeolites.  

The Freundlich model can be fitted extremely well to most CO2 adsorption data, although is not suitable for 
ERICa1and ERICa3 at 473, 503 and 534 K, or for ERINa2 and ERIMg2 at 473 K. The values of the Freundlich 
parameters (Kf and n) related to CO2 adsorption on ERI zeolites are listed in Table 3.  

Table 1. Textural parameters of natural (ERIN) and ion-exchanged (Na+, Ca2+, and Mg2+) erionite zeolites  
as determined from N2 adsorption. 

ERI 
ASL 

m2/g 

ASB 

m2/g 

ASt 

m2/g 
CB 

V∑  

cm3/g 

W0t 

cm3/g 

Vmeso 

cm3/g 

ERIN 243.9 169.22 12.99 -70 0.101 0.076 0.025 

ERINa1 244.7 205.4 11.91 -493 0.101 0.145 0.044 

ERINa2 504.4 389.6 21.08 -581 0.189 0.145 0.044 

ERINa3 545.7 416.7 15.33 -260 0.205 0.16 0.045 

ERICa1 325.5 270.6 29.65 -165 0.157 0.102 0.055 

ERINCa2 331.5 292.1 30.68 -564 0.162 0.106 0.056 

ERICa3 293.8 255.9 31.35 -628 0.147 0.089 0.058 

ERIMg1 322.7 289.0 30.97 -689 0.159 0.104 0.055 

ERIMg2 343.8 304.6 33.85 -571 0.169 0.109 0.060 

ERIMg3 309.4 275.9 24.14 -653 0.148 0.100 0.048 
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Table 2. Chemical composition (mass %) of erionites as determined by EDS. 

 ERIN Na1 Na2 Na3 Ca1 Ca2 Ca3 Mg1 Mg2 Mg3 

NaO 3.694 3.986 4.42 4.103 2.670 2.110 1.551 3.357 3.339 2.836 

MgO 1.194 1.536 1.376 1.453 1.719 1.702 1.685 2.122 2.155 2.365 

Al2O3 11.21 13.34 14.02 14.08 13.01 13.18 13.36 13.66 13.66 13.13 

SiO2 54.85 57.65 56.13 60.01 57.66 57.43 57.21 59.05 60.17 59.36 

K2O 2.309 1.939 1.670 1.879 2.718 2.648 2.578 2.718 2.650 2.763 

CaO 1.222 1.315 1.502 1.810 1.814 2.507 3.200 1.250 1.101 1.035 

Fe2O3 1.801 2.373 0.605 0.682 3.031 2.962 2.893 2.755 3.103 2.407 

FeO 1.621 2.136 0.545 0.613 2.727 2.665 2.603 2.479 2.792 2.166 

Si/Al 4.893 4.320 4.004 4.261 4.429 4.356 4.283 4.321 4.405 4.518 

Table 3. Henry, Freundlich and Langmuir parameters for the adsorption of CO2 on ERIN and ERI exchanged zeolites. 

Sample T, K 
KH x 102 

mmol g-1 mmHg-1 
am, mmol g-1 RL 

Kf x102 

mmol g-1 mmHg-1 
n Rf 

ERINAT 

473 2.069 0.155 0.996 2.125 1.636 0.988 

503 1.531 0.160 0.996 1.759 1.602 0.990 

543 0.859 0.179 0.998 1.188 1.528 0.990 

588 0.713 0.173 0.996 1.088 1.579 0.993 

623 0.615 0.165 0.992 0.929 1.537 0.995 

ERINa1 

473 3.617 0.238 0.998 3.581 1.616 0.991 

503 2.856 0.216 0.997 2.994 1.630 0.992 

543 1.689 0.236 0.996 2.014 1.511 0.995 

588 1.571 0.186 0.980 1.900 1.631 0.998 

623 1.060 0.216 0.994 1.395 1.495 0.995 

ERINa2 

473 5.171 0.206 0.999 4.641 1.844 0.986 

503 2.679 0.238 0.999 2.963 1.509 0.988 

543 2.131 0.191 0.990 2.468 1.700 0.996 

588 1.400 0.242 0.998 1.723 1.460 0.994 

623 1.070 0.201 0.985 1.383 1.516 0.998 

ERINa3 

473 5.759 0.211 0.996 4.777 1.768 0.990 

503 2.887 0.255 0.998 2.963 1.509 0.991 

543 2.282 0.218 0.996 2.543 1.610 0.992 

588 1.739 0.220 0.996 2.005 1.535 0.998 

623 1.292 0.247 0.988 1.607 1.454 0.996 

ERICa1 

473 1.902 0.148 0.995 2.067 1.717 0.986 

503 1.325 0.168 0.995 1.620 1.587 0.986 

543 0.939 0.166 0.998 1.282 1.580 0.987 

588 0.816 0.163 0.993 1.197 1.617 0.995 

623 0.636 0.179 0.996 0.982 1.542 0.994 

ERICa2 

473 2.300 0.274 0.988 2.914 1.690 0.996 

503 1.839 0.272 0.983 2.602 1.720 0.996 

543 0.993 0.303 0.987 1.660 1.591 0.997 
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588 0.902 0.317 0.988 1.471 1.524 0.999 

623 0.649 0.361 0.996 1.029 1.396 0.996 

ERICa3 

 

473 2.261 0.134 0.999 2.365 1.852 0.976 

503 1.848 0.130 0.997 2.087 1.857 0.983 

543 1.528 0.127 0.993 1.851 1.848 0.987 

588 1.438 0.117 0.981 1.921 2.063 0.995 

623 1.239 0.125 0.985 1.635 1.854 0.995 

ERIMg1 

 

473 1.549 0.140 0.996 1.691 1.614 0.990 

503 1.126 0.145 0.995 1.338 1.548 0.991 

543 0.740 0.160 0.996 0.996 1.487 0.991 

588 0.609 0.136 0.987 0.907 1.587 0.998 

623 0.549 0.136 0.984 0.886 1.632 0.996 

ERIMg2 

473 2.379 0.136 0.999 2.260 1.653 0.972 

503 2.445 0.110 0.991 2.328 1.961 0.985 

543 1.280 0.119 0.998 1.596 1.809 0.979 

588 1.110 0.119 0.993 1.530 1.852 0.988 

623 0.915 0.111 0.991 1.265 1.787 0.993 

ERIMg3 

473 1.436 0.090 0.985 1.465 1.789 0.992 

503 1.000 0.093 0.987 1.205 1.772 0.993 

543 0.882 0.093 0.988 1.143 1.797 0.995 

588 0.900 0.086 0.982 1.267 2.020 0.992 

623 0.821 0.088 0.979 1.241 2.052 0.993 

 

The trends of the isosteric heat of adsorption (qst) as a function of the amount of adsorbed CO2 on ERI zeolites 
are presented in Table 4. Sorption data of CO2 on some other adsorbents that were previously studied16-18 are 
reported for comparison. The qst values related to the ERI substrate corresponds to the following sequence: ERIN; 
ERINa2 > ERINa3 > ERINa1; ERICa2 > ERICa1 > ERICa3; ERIMg2 > ERIMg1 > ERIMg3. The enrichment of 
structure by Na+ ensures the participation of these cations in the interaction with CO2 quadrupole (0.64 A3) 
generating an improved adsorption centers (Table 4). These results can be explained considering the difference in 
the physical and chemical properties of CO2 molecule. First, its critical diameter is equal to 0.31 nm, with the 
polarizability equal to 1.9 A3 19. This effect makes that the molecule is influenced to a greater extent by the electric 
field, which create the cations presented in solid. It is very likely that differences in properties of this gas are 
responsible for the CO2 to be adsorbed in remote sites, as this molecule interacts specifically with the electric field 
of solid. Therefore, because the qst values proceeding from CO2 adsorption on ERIN, ERINa1, ERINa2, ERINa3 and 
ERICa2 are larger than the enthalpies of vaporization (17.165 kJ mol-1), the adsorptive molecules interact strongly 
both with the surface and with the neighboring adsorbate molecules20. Hence, the primary and secondary micropore 
mechanism fillings seem to take place during the CO2 adsorption on ERI samples: first, a strong interaction between 
adsorbate molecules and the adsorbent surface occurs; next, a cohesive interaction between adsorbate molecules is 
developed. The fact that the magnitudes of the isosteric heats of adsorption are different from one adsorbent to 
another can be related to the high interaction energy depicted by the quadrupole moment of CO2 toward the oxygen 
atoms of the zeolites, cation clusters and also to the molecular sieve effect displayed by each adsorbent.  The 
isosteric heat of adsorption of CO2 on ERIN, ERINa1, ERINa2, ERINa3, ERICa1 and ERICa2 is associated with 
nearly uniform surfaces ever since the adsorption on these substrates is smaller than that taking place on ERINa2. 
This behavior can be attributed to the slow diffusion of the CO2 inside the zeolitic structure mainly because of the 
partial blocking of pore entrances by the cations and also by the residual material that remains at the entrances of 
cavities. According to this, it can be expected that the available adsorption space and the different sizes of the 
entrance windows play major roles in the magnitudes of the isosteric  



 Miguel Angel Hernandez et al.  /  Procedia Chemistry   15  ( 2015 )  33 – 41  39

 

0 15 30 45 60
0.00

0.05

0.10

0.15

0.20

 

 

a/ERIN

 200
 230
 270
 315
 350

0 15 30 45 60
0.00

0.05

0.10

0.15

0.20

 200
 230
 270
 315
 350

 

b/ERINa1

d/ERINa3

0 15 30 45 60
0.00

0.05

0.10

0.15

0.20
c/ERINa2

 200
 230
 270
 315
 350

0 15 30 45 60
0.00

0.05

0.10

0.15

0.20

a 
m

m
ol

 g
-1

p mmHgp mmHg

a 
m

m
ol

 g
-1

a 
m

m
o l

 g
-1

p mmHg

 200
 230
 270
 315
 350

a 
m

m
ol

 g
-1

p mmHg  
Fig. 1. Adsorption isotherms of CO2 on ERIN and ERINa zeolites. 
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Fig. 2. Adsorption isotherms of CO2 on ERICa and ERIMg zeolites. 
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Table 4. Standard adsorption energy (- U0, kJ mol-1) and isosteric heats of adsorption (-qst, kJ mol-1) of CO2. 

 -ΔU0 -qst ΔHN 

ERIN 20.471 18.800 1.634 

ERINa1 19.363 21.105 3.939 

ERINa2 24.155 26.285 9.119 

ERINa3 22.205 22.355 5.189 

ERICa1 17.079 15.659  

ERICa2 20.725 16.823 -0.33 

ERICa3 9.233 10.557 -6.69 

ERIMg1 17.246 17.612 0.446 

ERIMg2 17.320 18.584 1.418 

ERIMg3 7.859 10.557 -6.09 

Silicalite   20  

13X  40  

SBA-15  30  

 

heats of CO2 adsorption on ERIN and ERINa2. Therefore, progressive Na-exchange treatment of ERI develops into 
wider and wider pore entrances by cation exchange and larger and larger micropore volumes; so these two effects 
allow an increased adsorption and a cohesive interaction between adsorbed molecules. Based on the two latter 
effects, progressive Na exchange treatment of ERI ensures the participation of a greater number of adsorption 
centers in exchanged zeolites. Another possible effect produced by exchange treatment is the transformation of 
ultramicropore entities into supermicropore cavities, in which secondary (cohesive) adsorption is likely to take 
place. 

4. Conclusions 

Ion exchange treatments via Na+, Ca2+, and Mg2+ salts of natural high-silica erionites can render efficient 
nanoporous substrates for the adsorption of different compounds. Either protons or smaller ionic species can 
substitute large blocking cations at the pore entrances of natural erionite, facilitating access of different molecules 
into the channels of erionite. The concomitant modified structure created by the ion-exchange treatment enhances 
the microporous channel widths, thus creating supermicropore structures. The changes experienced by the 
nanoporosity of natural and exchanged erionite are conveniently described by the Dubinin-Astakhov approach since 
the calculated values match the amplitudes of the cavities of this zeolite. Mesoporosity caused by the ion exchange 
treatment can be approximately evaluated via the BJH method. The highest adsorption capacity of these erionite 
zeolites is presented when ERIN is ion-exchanged with Na+.  
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