- 2. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2012 году».[Электронный ресурс]. // http://www.ecogosdoklad.ru/default.aspx
- 3. Кизильшейн Л.Я. Экогеохимия элементов-примесей в углях. Ростов-на-Дону: Изд-во СКНЦ ВШ, 2002. – 296 с.

ТОКСИЧНЫЕ ЭЛЕМЕНТЫ-ПРИМЕСИ В УГЛЯХ РЕСПУБЛИКИ КАЗАХСТАН М.З. Кажумуханова

Научный руководитель профессор С.И. Арбузов Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Республика Казахстан располагает значительными ресурсами разнообразных по качеству и марочному составу ископаемых углей. По запасам угля страна занимает восьмое место в числе 12 государств, в которых сосредоточены свыше 96% мировых запасов угля и третье место - среди стран СНГ. Суммарные запасы

угля в Казахстане достигают 170 млрд. т [1].

По степени преобразованности органического вещества угли относятся к бурым (от лигнитов и землистых бурых) и каменным различной степени метаморфизма, вплоть до полуантрацитов и антрацитов. Возраст углей от девона до палеогена [4].

Угли Казахстана в целом слабо изучены на комплекс попутных ценных и токсичных элементов-примесей, при этом развитая угледобывающая и связанная с нею теплоэнергетическая промышленность страны обеспечивает стабильный рост добычи и потребления угля. Вместе с этим усиливается воздействие на окружающую среду, что вызывает необходимость обеспечения экологически безопасного сырья.

Для оценки углей на комплекс попутных элементов была подготовлена коллекция из 161 пробы угля и углевмещающих пород различных угольных бассейнов и месторождений Казахстана и выполнено ее исследование. В качестве основного метода использован инструментальный нейтронно-активационный анализ (ИНАА), реализованный на базе исследовательского ядерного реактора ИРТ-Т ТПУ. Методом ИНАА определены содержания 29 элементов-примесей (табл. 1) в 74 пробах угля (аналитик А.Ф. Судыко).

Определение содержания Hg производилось атомно-абсорбционным методом с электрохимической атомизацией на анализаторе ртути PA 915+ с приставкой ПИРО-915+ (161 проба). Оба вида анализов выполнялись на кафедре геоэкологии и геохимии ТПУ.

В целом, угли Казахстана обогащены редкими, радиоактивными и цветными металлами. Наиболее высокие концентрации характерны для Sr, Sc, Hf, REE, меньше – для Cs, Zn, Th, U и Au.

Для углей Карагандинского бассейна характерно невысокое среднее содержание большинства элементов-примесей, сопоставимое с кларковыми значениями для каменных углей. В них установлены более высокие, по сравнению с кларком, концентрации скандия и ртути. Содержание ртути в некоторых пробах превышает «порог токсичности» для углей и достигает 1,25 г/т. Природа накопления ртути в углях требует специального изучения. Аномалии ртути могут быть обусловлены значительным влиянием вулканогенного материала, установленного в

верхней части угленосного разреза и представленного многочисленными тонштейнами и рассеянным пепловым материалом [3]. Известно, что пепловые выбросы вулканов обогащены As, Sb, Hg, Cu и другими летучими элементами [5].

Таблица 1 Средние содержания элементов-примесей в угольных месторождениях Казахстана, г/т

	Бассейны, месторождения							но 0е	В
Элементы	Экибастузский	Карагандинский	Каражыра	Талдыколь	Сарыколь	Шубарколь	Кларк для углей [8]	Минимальное возможно промышленно значимое содержание [6]	Порог токсичности для углей [6]
Sc	8,7	6,0	8,9	8,7	7,9	0,42	3,7	10	н.д.
Cr	7,3	10,0	23,5	34,9	17,7	3,2	17	1400	100
Co	6,0	3,6	8-539	7,1	6,6	1,9	6	20	100
Zn	н.д.	н.д.	119	37,3	27,0	22,8	28	400	200
As	2,4	н.д.	0,13	3,4	11,7	0,63	9	н.д.	300
Rb	3,3	<0,6	12,5	21,6	30,9	6,8	18	35	н.д.
Sr	150	100	270	119	140	30	100	400	н.д.
Cs	0,62	0,63	0,35	1,4	2,9	0,03	1,1	30	н.д.
Ba	272	149	190	248	279	7	150	н.д.	н.д.
La	11,6	4,5	10,4	13,1	7,8	1,2	11	150	н.д.
Ce	26,7	10,2	23,3	30,7	21,0	2,2	23	н.д.	н.д.
Nd	н.д.	н.д.	12,9	13,9	7,7	0,92	12	н.д.	н.д.
Sm	2,9	1,4	4,9	2,8	2,0	0,25	2,1	н.д.	н.д.
Eu	0,8	0,44	1,1	0,8	0,5	0,04	0,43	н.д.	н.д.
Tb	0,6	0,25	0,67	0,6	0,4	0,04	0,31	н.д.	н.д.
Yb	2,0	0,62	1,9	1,9	1,3	0,32	1	1,5	н.д.
Hf	2,5	1,8	0,74	2,1	1,9	0,05	1,2	5	н.д.
Аи, мг/т	0,88	<0,01	11,0	1,6	0,82	4,3	4,4	20	н.д.
Hg	0,07	0,87-1,25	0,013- 1,7	0,05	0,08	н.д.	0,1	1,0	1,0
Th	2,7	1,1	0,1	3,3	3,9	0,12	3,2	н.д.	н.д.
U	0,98	0,42	0,5	9,0	1,0	0,17	1,9	н.д.	н.д.
A ^d ,%	36,4	9,8	11,7	25,3	25,7	н.д.			
					•	•			•

Примечание: н.д. — нет данных; жирным шрифтом выделены содержания, превышающие «порог токсичности» и минимальное возможно промышленно значимое содержание

Высокие концентрации ртути выявлены также и в месторождении Каражыра. При этом содержание ртути довольно неравномерно и колеблется от 13 до 1710 мг/т. Здесь же отмечены наиболее высокие для углей Казахстана содержания кобальта (до 539 г/т), цинка (в среднем 119 г/т) и золота (в среднем 11 мг/т).

Своеобразный характер геохимической специализации углей предполагает связь этих аномалий с общими минерагеническими и геохимическими особенностями этого блока земной коры.

В углях Экибастузского бассейна существенно выше кларкового среднее содержание Hf, Ba, Sr, Sc, Co, лантаноидов, а уровни накопления Yb достигают возможно промышленно значимых концентраций. Однако, в связи с высокой зольностью углей бассейна, содержание этих элементов в золе угля существенно ниже среднемировых данных (таблица 1).

Новые данные свидетельствуют о низком содержании элементов-примесей в углях месторождения Шубарколь. Они, в основном, ниже соответствующих кларков для каменных углей. Это позволяет рассматривать их как одни из наиболее экологически чистых в регионе. Согласно ранее проведенным исследованиям [2, 7], угли Шубарколь обогащены редкоземельными элементами, наиболее высокие концентрации которых наблюдаются в зоне выветривания углей, при этом максимальные накопления (Y - 254 г/т, Sc - 96, Dy - до 384, Gd - до 335, Sm -до 211, La- 46, Ce 89 и Nd - до 806 г/т угля), приурочены пространственно к линзовидным зонам аномального накопления урана.

Таким образом, исследование углей Казахстана показало, что здесь возможно выявление промышленно значимых концентраций Со, Zn, Rb, Hg, REE и Sc. Следует также учитывать, что ряд малых элементов при определенных содержаниях (превышение «порога токсичности») являются в той или иной мере «вредными» по уровню негативного воздействия на природные объекты. Одним из таких элементов является Hg, содержание которой в изученных углях Карагандинского бассейна и месторождения Каражыра достигает «порога токсичности», а иногда и превышает его.

Расчеты эмиссии показали, что годовая эмиссия ртути от использования углей Карагандинского бассейна и месторождения Каражыра составляет до 50 т (табл. 2). Эти факты необходимо учитывать при освоении месторождений и разработке природоохранных мероприятий. Необходимо провести детальное исследование распределения этого элемента в разрезе угленосных отложений и организация мониторинга качества товарных углей с учетом их возможного ртутного загрязнения.

Таблица 2 Расчетная годовая эмиссия ртути от сжигания углей Казахстана, т/год

Бассейн, месторождение	Годовая добыча, млн т [1]	Содержание ртути, г/т	Расчетная годовая эмиссия, т
Экибастузский	62	0,07	4,34
Карагандинский	30	0,87-1,25	26,1-37,5
Майкубенский	8	0,07	0,56
Каражыра	6	0,013-1,7	0,078-10,2

Литература

1. Байков Н., Безмельницына Г. «Мировое потребление и производство первичных энергоресурсов».- Москва, журнал «Мировая экономика и международные отношения», 2007, № 5, с.44-52

- 2. Бассейны и месторождения углей и горючих сланцев Казахстана [Текст]: справочник / Т.М. Азизов, В.И. Власов; Под ред. А.М. Кажегельдина. Алматы : [б. и.], 1997. 113 с.
- 3. Вулканический пепел в углях Карагандинского бассейна Текст. / Г.М. Лущихин // Вопросы геологии угленосных отложений Азиатской части СССР. М-Л.: Изд-во АН СССР, 1961.-342 с.
- 4. Геология месторождений угля и горючих сланцев СССР. Т. 5:Угольные бассейны и месторождения Казахстана/ под ред. И. В. Орлова и др. М.: Недра, 1973. 718 с.
- 5. Миклишанский А.З., Яковлев Ю.В., Меняйлов И.А. О геохимической роли поступления химических элементов с летучей компонентой активного вулканизма // Геохимия. 1979. №11. С. 1652-1660.
- 6. Ценные и токсичные элементы в товарных углях России: Справочник./Под ред. В.Ф. Череповского, В.М. Рогового и В.Р. Клера. М.: Недра, 1996.-238 с.
- 7. Элементы-примеси в месторождениях Казахстана: справочник / под ред. А.А. Абдуллина и др.- Алматы ИАЦ ГПР РК, 1999 – Т. II – 144 стр.
- 8. Ketris M.P., Yudovich Ya.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals // Int. J. Coal Geol. 2009. V. 78. P. 135–148.

ЭМИССИЯ МЕТАНА ПРИ ДОБЫЧЕ УГЛЯ: ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ И.А. Оберемок

Научный руководитель ассистент Е.А. Филимоненко Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В последнее время внимание к метану заметно возросло. Это связано с принятием в 1997 Киотского протокола (КП), согласно которому страны-участницы обязались снизить выбросы метана и других парниковых газов (ПГ). Действие продлённого КП прекратилось в 2012. В ноябре 2014 года в г. Лима на 20-й конференции сторон Рамочной конференции об изменении климата (РКИК) ООН было выдвинуто решение до марта 2015 составить программы по сокращению выбросов ПГ. Россия обязалась к 2030 году снизить на 70-75% количество выбросов ПГ относительно 90-х годов. Новое соглашение, регламентирующее данное заявление, придёт в силу в 2020 году и будет называться Парижским договором[7].

Метан — это углеводород, являющийся парниковым газом. Он не имеет запаха и безвреден для человека, чего нельзя сказать об атмосфере. Являясь вторым по распространению ПГ (на его долю приходится 16% выбросов) [3], он наносит эффект в 20-25 раз больший, чем диоксид углерода при тех же количествах. Его период жизни — 10-12 лет, в отличие от $CO_2(130\text{лет})$ и $NO_2(120\text{лет})$ [6]. Поэтому сокращение его эмиссии может значительно повлиять на замедление развития парникового эффекта в ближайшие десятилетия. Также, метан имеет приличную удельную теплоту сгорания (УТС), превышающую природногазовую (УТС природного газа колеблется в рамках 28 — 46 МДж/м³, УТС метана — 35 — 39 МДж/м³ [6]). Следовательно, извлечение и использование метана — это получение ценного энергетического ресурса, способного улучшить экономическое положение областей с концентрацией метана в своих землях.