- 3. Иогансен, К.В. Спутник буровика. Справочник. М.: Недра, 1990. 303с.
- 4. Правила устройства электроустановок (ПУЭ), утвержденные Минэнерго, Госгортехнадзором 05.10.79 г.
- 5. Строительные норма и правила, установленные CH 245-71, CH 433-79 и CHиП 23-05-95.
- 6. **Алексеев, С.В.** Гигиена труда / С.В. Алексеев, В.Р. Усенко. М.: Медицина, 1988. 576 с.
- 7. СНиП 23-05-95 Естественное и искусственное освещение (утв. постановлением Минстроя РФ от 2 августа 1995 г. N 18-78).
- 8. Гимранова, Г. Г. Особенности формирования нарушений здоровья и их профилактика у работников нефтедобывающей промышленности : дис. ... д-р мед. наук : 14.02.04 / Галина Ганиновна Гимранова; Уфимский НИИ медицины труда и экологии человека Уфа, 2010. 265 л.

ГОДОВЫЕ КОЛЬЦА ДЕРЕВЬЕВ КАК ИНДИКАТОР ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

С.А. Меховников, Ю.С. Веселова

Научный руководитель доцент Т.А. Архангельская Национальный исследовательский Томский политехнический университет, г. Томск, Россия

С каждым годом все острее становится проблема экологии. Практически во всех уголках планеты так или иначе нарушены естественные экосистемы. И чтобы понять, какой вклад в это вносит человек, предлагается использовать реконструкцию палеоклиматических событий. Данный метод используется для ретроспективной оценки влияния на окружающую среду катастрофических событий таких как: падения метеоритов, землетрясений, селеобразования и др., а также для оценки воздействия на геохимическую обстановку среды обитания человека.

Удобным способом получить достоверную информацию является изучение годовых колец деревьев. Они сохраняют в себе информацию о происходящих изменениях климата, природных катастрофических явлениях и деятельности человека, поэтому удовлетворяют всем требованиям в качестве объекта исследования.

На основе полученной информации делаются попытки оценить динамику, интенсивность и специфичность природного и техногенного, в том числе радиоактивного воздействия на природную среду. Годовые кольца деревьев в качестве индикатора загрязнения окружающей среды могут дать ответ на вопрос, что было с тем или иным показателем среды (влажность, температура, химизм и т.д.) за определенный прошедший период времени. И могут характеризовать временной ряд от нескольких десятков и очень редко до тысячи лет[3]. Они могут дать достаточно информации для ретроспективного анализа, так как период образования каждого кольца можно определить с точностью до года, определить время года, когда происходили те или иные события, связанные с привносом различных химических элементов в окружающую природную среду.

Методика исследования годовых колец деревьев имеет определенные ограничения и методические трудности, о чем говорят многие авторы, изучающие данную проблему. Прежде всего, это связано с радиальным перемещением изучаемых компонентов во время роста древесины, обусловленными особенностями

транспорта воды внутри ствола, существованием различных форм органических лигандов [2, 3].

В годовых кольцах деревьев изучается ширина колец, плотность, пористость, размеры и морфология клеток, а также другие показатели камбия деревьев, в том числе информация об их химическом составе [3].

На сегодняшний день наиболее перспективными методами исследования годовых колец деревьев для реконструкции прошлых событий, приведших к загрязнениям, являются: авторадиография - метод фиксации радиоактивного излучения от радионуклида, который присутствует в исследуемом веществе; f-радиография (осколочная радиография) — метод, позволяющий исследовать и определять характер распределения, уровень накопления делящихся радионуклидов; метод инструментального нейтронно-активационного анализа (ИНАА) — метод, позволяющий с высокой точностью определять количественное содержание делящихся радионуклидов, их пространственное распределение, а также формы нахождения в годовых кольцах деревьев.

Данное направление исследований является перспективным, о чем свидетельствуют работы, посвященные изучению годовых колец деревьев (Ковалевский А.Л., Рихванов Л.П., Берзина Г.П. и др.) [1, 2, 3].

Наши исследования направлены на изучение годовых колец деревьев, отобранных в различных регионах Республики Казахстан. Методом определения выбран инструментальный нейтронно-активационный анализ, как наиболее точный и достоверный. Он особенно эффективен при решении задач, связанных с проведением многоэлементного анализа.

Актуальность работы обусловлена тем, что в Республике Казахстан подобных исследований не проводилось. Использование данной методики и выбор древесины в качестве образцов дадут нам возможность восстановить историю прошлых загрязнений на данной территории.

Литература

- 1. Березина И.Г. Выявление радиоактивного загрязнения окружающей среды методом радиографии / И.Г. Берзина, Г.П. Герцен, С.В. Столяров, В.В. Токаревский // Геохимия. -1993. -№ 3. С. 449–456.
- 2. Ковалевский А.Л. Биогеохимия растений / А.Л. Ковалевский. Новосибирск: Наука, 1991. 294 с.
- 3. Рихванов Л.П. Дендрорадиография, как метод ретроспективной оценки радиоэкологической ситуации / Л.П. Рихванов, Т.А. Архангельская, Ю.Л. Замятина; Томский политехнический университет. Томск: Дельтаплан, 2015. 148 с.
- 4. Шиятов С.Г. Методы дендрохронологии. Часть І. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации: учебно-методическое пособие / С.Г. Шиятов, Е.А. Ваганов, А.В. Кирдянов, В.Б. Круглов и др. Красноярск: КрасГУ, 2000. 80 с.