

УДК 620.179

ОПТИМИЗАЦИЯ УСЛОВИЙ ДЛЯ КОНТРОЛЯ КАЧЕСТВА НАПОЛНИТЕЛЯ В МЕТАЛЛИЧЕСКИХ ТРУБКАХ

К.Н. Коробов, Б.И. Капранов, И.Н. Абрамов¹

Томский политехнический университет ¹Приборостроительный завод, г. Трёхгорный E-mail: korobovkirill@mail.ru

Проанализирована возможность с помощью цифровой радиографии контролировать качество наполнителя в детонирующем шнуре с целью обнаружения разноплотных включений, разрывов и других технологических нарушений. Проанализированы закономерности изменений интенсивности прошедшего потока квантов в геометрии узкого пучка. Определена энергия рентгеновского излучения, обеспечивающая максимальный перепад интенсивности прошедшего потока при изменении плотности наполнителя на ± 30 %.

Ключевые слова:

Рентгеновская трубка, линейный коэффициент ослабления, массовый коэффициент ослабления, интенсивность потока квантов.

Введение

Оперативный непрерывный контроль внутреннего заполнения детонирующего шнура (ДШ) возможен только с помощью просвечивания рентгеновским или гамма излучением с регистрацией прошедшего через

ДШ потока квантов. Возможность обнаружения включений с меньшей и большей плотностью в материал наполнителя связана, соответственно, с уменьшением или увеличением линейного коэффициента ослабления комбинацией стенка-наполнитель-стенка.

Наполнитель

Наполнитель ДШ представляет собой органическое вещество сложного состава [1]. Процентное содержание элементов представлено в табл. 1.

Таблица 1. Процентное содержание элементов
--

таблица 1. процентное содержание элементов							
Элемент	С	Н	Ν	0			
Процентное содержание, %	40,77	2,43	10,19	46,61			

В соответствии с [2] массовый коэффициент ослабления для наполнителя определяется по формуле (1):

$$\frac{\mu}{\rho} = \left(\frac{\mu}{\rho}\right)_1 \omega_{1\rho} + \left(\frac{\mu}{\rho}\right)_2 \omega_{2\rho} + \cdots$$
(1)

Расчёт производился для каждого вида взаимодействия: $\left(\frac{\mu}{\rho}\right)_{\text{inc,t}}^{\text{KN}}$ – для некогерентного рассеяния, $\left(\frac{\mu}{\rho}\right)_{\tau,t}$ – для фотоэффекта, $\left(\frac{\mu}{\rho}\right)_{\text{tot,t}}$ – для полного массового коэффициента ослабления узкого пучка в диапазоне энергий до 100 кэВ. Полученные данные представлены в табл. 2.

Е, МэВ	$\left(\frac{\mu}{\rho}\right)_{inc,t}^{KN}$	$\left(\frac{\mu}{\rho}\right)_{\tau,t}$	$\left(\frac{\mu}{\rho}\right)_{tot,t}$
0,005	0,2008	31,449	32,096
0,006	0,2007	17,906	18,409
0,008	0,1986	7,3236	7,7484
0,01	0,1976	3,5952	3,9525
0,015	0,1935	0,9599	1,2398
0,02	0,1904	0,3749	0,6182
0,03	0,1843	0,0976	0,31
0,04	0,1782	0,0372	0,2324
0,05	0,173	0,0177	0,2018
0,06	0,1679	0,0097	0,1858
0,08	0,1593	0,0037	0,1673
0,1	0,1516	0,0015	0,1565

|--|

Расчёт прохождения излучения через объект контроля проводился в геометрии, представленной на рис. 1.

Исследуемый объект представляет собой алюминиевую трубку диаметром 1,5 мм и толщиной стенки 0,4 мм.

Рис. 1. Геометрия расчёта

Изменение потока квантов N происходит по экспоненциальному закону. Для поглотителя, имеющего сложное строение [3]:

$$N = N_0 e^{-\mu_1 x_1} e^{-\mu_2 x_2} e^{-\mu_3 x_3},$$
(2)

где µ₁; µ₂; µ₃ – линейные коэффициенты ослабления для алюминия и наполнителя; x₁; x₂; x₃ – толщина алюминия и наполнителя.

Серия Инженерные науки

Переход от массового коэффициента ослабления к линейному определяется формулой:

$$\mu = \mu_{\rho}\rho, \tag{3}$$

где ρ – плотность поглотителя, г/см³.

Для расчёта использовались следующие начальные условия: $N_0 = 10^{10}$; E = 10...100 кэB; x(Al) = 0,04 см; x (сердечника) = 0,07 см; $\rho(Al) = 2,69$ г/см³; ρ (сердечника) = 1,66 г/см³.

Линейный коэффициент ослабления для алюминия и сердечника рассчитывался с использованием формулы (3), данных табл. 2 и значений плотностей алюминия и сердечника в диапазоне энергий от 10 до 100 кэВ.

Полученные данные представлены в табл. 3.

Таблица 3. Линейные коэффициенты ослабления для Al и сердечника.

Е, МэВ	Al	Сердечник
0,01	70,747	6,5612
0,015	21,439	2,0581
0,02	9,1729	1,0262
0,03	2,9321	0,5145
0,04	1,4661	0,3857
0,05	0,955	0,335
0,06	0,7263	0,3084
0,08	0,538	0,2777
0,1	0,4546	0,2599

Расчёт изменения интенсивности потока квантов N в геометрии узкого пучка излучения проводился с использованием формулы (2), данных табл. 3, исходных данных толщин материалов х и начального потока N₀. Полученные данные представлены в табл. 4.

Таблица 4.	Изменение	интенсивности	потока	квантов	Νв	геометрии	узкого	пучка	излучения
для четырёх	к случаев: с о	сердечником, бе	з сердеч	ника, пл	отно	сть сердечи	ника ±30	0 %	

ErroD	Cappany	Без	Плотность	Плотность
с, кэр	С сердечником	сердечника	сердечника +30 %	сердечника -30 %
10	$0,22 \times 10^{8}$	$0,36 \times 10^{8}$	$0,2 \times 10^{8}$	$0,27 \times 10^{8}$
15	$15,7 \times 10^{8}$	$18,2 \times 10^{8}$	$15,1 \times 10^{8}$	$16,5 \times 10^{8}$
20	45×10^{8}	$48,3 \times 10^{8}$	44×10^{8}	$45,9 \times 10^{8}$
30	$76,5 \times 10^{8}$	$79,2 \times 10^{8}$	$75,7 \times 10^{8}$	$77,3 \times 10^{8}$
40	$86,8 \times 10^{8}$	$89,1 \times 10^{8}$	86×10^{8}	$87,5 \times 10^{8}$
50	$90,6 \times 10^{8}$	$92,7 \times 10^{8}$	90×10^{8}	$91,2 \times 10^{8}$
60	$92,4 \times 10^{8}$	$94,4 \times 10^{8}$	$91,8 \times 10^{8}$	$92,8 \times 10^{8}$
80	$94,1 \times 10^{8}$	$95,9 \times 10^{8}$	93,5×10 ⁸	94,6×10 ⁸
100	$94,7 \times 10^{8}$	$96,4 \times 10^{8}$	94×10^{8}	95,3×10 ⁸

Расчёт абсолютного и относительного отклонений производился по формулам [4]:

$$\Delta N = N_{\mu_{3M}} - N_{_{3T}}$$

(4)

где ΔN – абсолютное отклонение интенсивности потока прошедших квантов; $N_{_{H3M}}$ – измеренное значение N интенсивности потока прошедших квантов; $N_{_{3T}}$ – эталонное значение N интенсивности потока прошедших квантов.

За эталонное значение приняты значения, вычисленные для первого случая (2 столбец табл. 4), за измеренные – значения, вычисленные для второго, третьего и четвёртого случаев (3, 4, 5 столбцы табл. 4).

$$\delta X = \frac{\Delta X}{X_{\text{st}}} \times 100 \% \tag{5}$$

где δX – относительное отклонение.

Серия Инженерные науки

Расчёт абсолютного и относительного отклонений производился по формуле (4) и (5). Полученные данные представлены в табл. 5.

Е, кэВ	ΔN1	δ1	$\Delta N2$	δ2	ΔN3	δ3
10	0,14	63,3	-0,02	-9	0,05	22,7
15	2,5	15,9	-0,6	-3,8	0,8	5,1
20	3,3	7,3	-1	-2,2	0,9	2
30	2,7	3,5	-0,8	-1	0,8	1
40	2,3	2,6	-0,8	-0,9	0,7	0,8
50	2,1	2,3	-0,6	-0,6	0,6	0,6
60	2	2,1	-0,6	-0,6	0,4	0,4
80	1,8	1,9	-0,6	-0,6	0,5	0,5
100	1,7	1,7	-0,4	-0,4	0,6	0,6

Таблица 5. Значения абсолютных отклонений ΔN

По данным табл. 5 построены графики зависимости абсолютного ΔN и относительного δN отклонений интенсивности потока прошедших квантов при наличии в наполнителе разрывов (отсутствии наполнителя) и при изменении плотности вещества наполнителя на ± 30 % графики зависимостей абсолютного ΔN и относительного δN отклонений представлены на рис. 2 и 3.

Рис. 2. График зависимости абсолютного отклонения ΔN от энергии Е

Рис. 3. График зависимости относительного отклонения δN от энергии Е

Анализ полученных зависимостей позволяет сделать следующие выводы:

- 1. Максимальное значение отклонения интенсивности потока квантов при образовании в наполнителе разрыва (воздух) имеет место при энергии квантов 20 кэВ. При использовании в качестве источника излучения рентгеновской трубки это соответствует напряжению на трубке 40 кВ.
- 2. Максимальное абсолютное отклонение интенсивности потока прошедших квантов при отклонении плотности на ±30 % также имеет место при энергии квантов 20 кэВ, т. е. при напряжении на трубке 40 кВ.
- 3. Относительное отклонение с увеличением энергии всегда уменьшается, т. е. имеет смысл использовать минимально возможные энергии.
- 4. При эффективной энергии 20 кэВ (напряжение на трубке 40 кВ) отклонение плотности наполнителя на ±30 % изменяет интенсивность потока прошедшего излучения на ±2 %.

Таким образом, система измерения должна обеспечивать статистическую погрешность не более ± 0.2 %, что соответствует количеству квантов в детекторе $N = n \cdot t \ge 10^6$ квантов.

С учетом малой ширины области регистрации, ограниченной требуемым пространственным разрешением 0,1 мм, это требует интенсивности потока квантов, создаваемых источником излучения, порядка 10^7 квантов на 1мм на детекторе или, с учетом ослабления расстоянием источник–детектор порядка 50 см, порядка 10^{13} квантов в секунду. Подобные интенсивности может обеспечить только рентгеновская трубка. При напряжении на трубке 40 кВ это соответствует току трубки 1 мА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лучинский Г.П. Курс химии. М.: Высшая школа, 1985. 416 с.
- 2. Сторм Э., Израэль Х. Сечения взаимодействия гамма-излучения. М.: Атомиздат, 1973. 168 с.
- 3. Неразрушающий контроль. Т. І. / под ред. В.В. Клюева. М.: Машиностроение, 2008. 560 с.
- 4. Румянцев С.В. Радиационная дефектоскопия. М.: Атомиздат, 1968. 560 с.

Поступила 11.04.2012 г.