НЕПРЯМОЕ ЭЛЕКТРООКИСЛЕНИЕ САЛИЦИЛАТОВ

О.Ю. Федорова, студент гр. 2ДМ41 Томский политехнический университет, 634050, г.Томск, пр.Ленина,30, тел.(3822)-606-333 E-mail: ksy.9308@mail.ru

В настоящее время огромное производство и сбыт лекарственных препаратов приводит к накоплению большого объема бракованных, просроченных или конфискованных партий фармацевтических средств на различных складах и хранилищах. Многие фармацевтические средства обладают высокой биологической активностью и, соответственно, низкой способностью к биоразложению в природных условиях, поэтому для предотвращения негативного воздействия на окружающую среду такого рода отходов их следует обезвреживать.

Наиболее популярными способами являются сжигание [1], плазмохимическое разрушение [2], окисление. Однако данные методы не лишены недостатков. Использование высоких температур и необходимость очистки образующихся вторичных загрязняющих веществ усложняет и удорожает термические методы детоксикации. Энергоемкость И сложность аппаратурного оформления плазмохимических технологий, a также необходимость очистки выбросов, ограничивает область их использования. Главный недостаток жидкофазного окисления - большая вероятность неполного окисления, как самих действующих веществ лекарственных средств, так и их вспомогательных компонентов.

В последние десятилетия все большую популярность завоевывают процессы непрямого электроокисления, особенно те, которые в той или иной степени направлены на защиту окружающей среды. В связи с этим целью данной работы является исследование жидкофазного процесса деструктивного разложения лекарственных средств (на примере салициловой кислоты и ее производных) в сернокислой среде электрохимически генерируемыми окислителями.

Минерализацию лекарственных средств до нетоксичных компонентов проводили в бездиафрагменном электролизере (объемом 30 дм³) со свинцовыми электродами (с рабочей площадью 10 см²) и магнитной мешалкой в 40 %-ных растворах серной кислоты, при плотности тока до 1 А/см², температуре 20 °С и атмосферном давлении. В качестве модельных соединений использовали следующие производные салициловой кислоты: сульфосалициловая кислота (ССК), 5-нитросалициловая кислота (5-НСК), 5-хлорсалициловая кислота (5-ХСК), 5-бромсалициловая кислота (5-БСК), 3,5-динитросалициловая кислота (3,5-ДНСК), ацетилсалициловая кислота (АСК) и салициламид (СА).

Эффективность окисления в лабораторных условиях оценивали простыми и доступными физико-химическими методами анализа: проводя спектрофотометрические измерения исследуемых растворов в видимой и ультрафиолетовой области спектра, определяя суммарное содержание органических веществ на микропроцессорном анализаторе Экотест-120.

Ранее проведенные исследования показали, что при исходной концентрации до 1 г/л салициловая кислота наиболее эффективно окисляется в 40 % серной кислоте [3]. Что касается производных СК, то большинство из них, даже при малых концентрациях, слаборастворимы в водных средах и это накладывает определенные трудности при

разработке способа их обезвреживания, особенно в условиях, когда процессу обезвреживания подвергаются высококонцентрированные растворы.

Экспериментальные данные показывают (табл. 1), что неоднородность системы замедляет ход процесса. Поэтому при окислении суспензий определяющим фактором является скорость доставки органических веществ к анодному пространству, где синтезируется окислитель. Перемешивание позволит эффективно проводить процесс не только с суспензией, но и эмульсией, что очень важно учитывать при разработке метода обезвреживания товарных форм некондиционных фармацевтических средств, которые в своем составе, помимо действующего вещества, могут содержать другие синтетические органические и даже высокомолекулярные соединения, например, спирты, красители и поверхностно-активные вещества.

Таблица 1. Химическое потребление кислорода (мгО/л) сернокислотных растворов салицилатов окисляемых при плотности тока 0,67 A/cm².

Произродино СV	Концентрация,	Время окисления, мин				
Производное СК	Γ/Π	0	20	40	60	
ССК	3	3500	2600	1400	500	
ССК	1,3	1527,8	_	_	< 30	
5-НСК	1,3	1154,3	770,4	180,6	< 30	
5-XCK	1,3	1552,6	1065,9	569,9	404,6	
5-БСК	1,3	1232,1	961,3	825,9	687,2	
3,5-ДНСК	1,3	807,6	778,3	618,2	585,7	
АСК	13,1	9000	3200	100	< 30	
CA	13,1	16000	5500	2000	_	

Интенсифицировать данный процесс возможно за счет введения дополнительного количества реакционно-способных соединений, например, персульфата аммония. Экспериментальным путем установлено, что в присутствии $(NH_4)_2S_2O_8$ максимальный выход окислителей при плотности тока $0.8~{\rm A/cm}^2$ наблюдается на $15~{\rm muhyre}$ электролиза $5~{\rm M}$ серной кислоты. Их суммарное количество увеличивается на $15~{\rm M}$. В этих условиях окисление органических соединений, несмотря на гетерогенность системы ускоряется в два раза (табл. 2).

Таблица 2. Химическое потребление кислорода (мгO/л) сернокислотных растворов салицилатов окисляемых при плотности тока 0.8 A/cm^2 .

Электролит	H_2SO_4	$H_2SO_4+(NH_4)_2S_2O_8$	H ₂ SO ₄	$H_2SO_4+(NH_4)_2S_2O_8$	
Время	Ацетилсалициловая кислота		Салициламид		
окисления, мин	Ацстилс	алициловая кислота	Салициламид		
0	9000	9000	16000	16000	
10	5000	3000	10000	6000	
20	3200	1000	5500	3500	
30	1000	30	3500	2000	
40	100	_	2000	1000	

Таким образом, исследован жидкофазный способ окисления производных салициловой кислоты под действием окислительной системы, образующейся in situ при пропускании электрического тока через сернокислотные растворы. Окисляемые

компоненты могут находиться в виде раствора, эмульсии или суспензии. Введение в электролитическую систему персульфата аммония ускоряет процесс глубокого окисления салицилатов до простых и нетоксичных соединений.

Список литературы:

- 1. Адамович Б.А., Дербичев А.-Г.Б., Дудов В.И. Новая технология уничтожения медицинских отходов // Экология и промышленность России. -2005. -№ 3. С. 10-14
- 2. Патон Б.Е., Чернец А.В., Маринский Г.С., Коржик В.Н, Петров В.С. Перспективы применения плазменных технологий для уничтожения и переработки медицинских и других опасных отходов // Соврем. Электрометаллургия Ч.1. 2005. N 3. С. 54.
- 3. Перемитина С.П., Волгина Т.Н., Новиков В.Т. Исследование процесса непрямого электроокисления салициловой и сульфосалициловой кислот // Журнал прикладной химии. 2007. Т. 81. \cancel{N} 2009. 6. С. 1042- 1044.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ МЕДИ С СЕРУСОДЕРЖАЩИМИ ЛИГАНДАМИ

 $H.\Pi.$ Чернова¹, аспирант каф. XT, $\Gamma.A.$ Аносова¹, к.х.н., ст. преподаватель, U.A. Щелокова¹, студент гр. XT-32, A.C. Π omanos², ∂ .x.H., ∂ ouehm,

 1 Алтайский государственный технический университет им. И.И. Ползунова, 656038, г. Барнаул, пр.Ленина, 46,

тел. (3852)-245-513

E-mail: galyna92@gmail.com

²Томский политехнический университет, 634050, г.Томск, пр.Ленина, 30, тел. (3822)-563-861

E-mail: potapov@tpu.ru

Координационные соединения находят широкое применение в различных областях техники. Так, образование хелатных комплексов используется для умягчении жесткой воды, важнейшую роль играют комплексные соединения в аналитической практике, в качестве катализаторов различных процессов. Многие из них широко распространены в природе и играют важную роль в биохимических процессах. Особый интерес представляют комплексы меди(II) благодаря своим физико-химическим свойствам.

Известны хелатные комплексы меди(II), проявляющие супероксиддисмутазную активность [1, 2]. Также бис(пиразольные) комплексы с нитратом меди (II) проявляют высокую антиоксидантную активность, исследованную на живых клетках человека [3].

Пиразолсодержащие производные диалкилсульфидов имеют, помимо донорных атомов азота, дополнительные атомы серы и выступают лигандами в комплексах с