РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ В СИСТЕМЕ ЧАСТИЦА-ПОДЛОЖКА ПРИ ФОРМИРОВАНИИ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ

Б.С. Зенин, к.ф.-м.н., доцент, Ю.А. Храпковская, студент гр. 4БМ31 Томский политехнический университет, 634050, г. Томск, пр. Ленина 30 тел.(3822) 56-41-14 E-mail: ylia-kallipso@mail.ru

Современное машиностроение предъявляет к материалам особые требования. Это связано с повышенными нагрузками на детали машин и механизмов, поэтому практически все детали при их изготовлении включают в себя обязательный этап дополнительной поверхностной обработки. Среди активно используемых технологий упрочнения поверхности методы газотермического напыления покрытий представляют несомненный интерес [1].

Напыление покрытия на поверхность детали представляет собой процесс нанесения с помощью высокотемпературной скоростной струи дисперсного порошка или капель расплавленного напыляемого материала, осаждающегося на основном металле при ударном столкновении с его поверхностью. Качество газотермических покрытий, в значительной степени зависит от адгезии напыляемых частиц. адгезии Величина определяется целым рядом условий, среди которых теплофизические условия играют ведущую роль. Таким образом, можно считать, что образование прочной связи частицы с подложкой происходит в результате термически активируемого процесса химического взаимодействия материалов частицы и основы в контакте [2]. В качестве характеристики термического процесса взаимодействия частицы с подложкой можно рассматривать термический цикл в контакте (рис. 1), который показывает изменение температуры со временем. Время t_0 , которое соответствует времени кристаллизации расплавленной частицы на подложке, обеспечивает наибольший прогрев поверхностного слоя подложки.

Рис. 1. Термический цикл в контакте напыленная частица – подложка.

Цель настоящей работы – рассмотреть характер распределения тепловой энергии и провести ее количественную оценку в системе напыленная частица – подложка в момент завершения кристаллизации частицы. В общем случае можно рассматривать четыре варианта условий взаимодействия движущейся со скоростью v частицы с подложкой (A):

 $T_{y} > T_{my}$ (частица расплавлена и перегрета, $T_{y} = T_{my} + \Delta T$)

 $T_{y} = T_{my}$ (частица расплавлена)

 $T_{y} = T_{my}$ (частица не расплавлена)

W

 $T_{u} < T_{m u}$ (частица не расплавлена, $T_{u} = T_{m u} - \Delta T$),

Здесь Т_{тч} – температура плавления частицы. В соответствии с законом сохранении энергии запишем уравнение баланса энергии в системе частицаподложка до и после столкновения

$$V_{\kappa} + Q_{T0y} = Q_y + Q_n + \Delta W \tag{1}$$

где W_{κ} - кинетическая энергия частицы в момент встречи ее с подложкой, Q_{T0u} - тепловая энергия аккумулированная в напыляемой частице, Q_u - тепловая энергия, сохраняемая в частице к моменту полной кристаллизации, Q_n - тепловая энергия, переданная в подложку, ΔW – потери энергии.

Пренебрегая потерями ΔW и считая, что кинетическая энергия переходит в тепло, будем рассматривать уравнение (1), как уравнение теплового баланса, слагаемые которого для каждого из четырех вариантов (А) определяются отдельно. Учитывая важную роль поверхности в создании адгезионной связи покрытия с основой, выделим в подложке поверхностный слой, температура которого отличается от контактной температуры (рис. 2) не более чем на 30⁰, и назовем его «горячим» слоем. С учетом принятых допущений и условий для варианта (2А) уравнение теплового баланса можно представить в виде

$$V_{\kappa} + Q_{T_{4}} + Q_{L} = Q_{4} + Q_{2C\pi} + Q_{ocm},$$
 (2)

где $Q_{T_{4}}$ – энергия, определяемая температурой нагрева частицы, Q_{L} - скрытая теплота кристаллизации, Q_{ccn} - энергия в «горячем» слое подложки, Q_{ocm} - остаточная энергия, передаваемая в объем подложки.

Преобразуем уравнение (2) к виду, удобному для расчета

 $(m_{u} \cdot v^{2})/2 + C_{u} \cdot m_{u} (T_{n\pi} - T_{0}) + L \cdot m_{u} = C_{u} \cdot m_{u} (T_{cpu} - T_{0}) + m_{cc\pi} C_{n} (T_{cp cc\pi} - T_{0}) + m_{ocm} C_{n} (T_{cp ocm} - T_{0})$ (2a)

где *m*₄, *m*_{2CЛ}, *m*_{0CM}, *T*_{CP4}, *T*_{CP 2CЛ}, *T*_{CP 0CM} – массы и средние температуры частицы (сплета), горячего слоя и остального объема подложки соответственно.

Материалы основы и покрытия, условия напыления. В качестве модельных материалов при проведении численных расчетов были выбраны для подложки – железо, для напыляемой частицы – никель, вольфрам и алюминий. Теплофизические характеристики материалов представлены в таблице 1.

		· 1	1 1	1
Материал	T_n, K	^р о, кг/м ³	С, Дж/кг•К	L, Дж/кг·10 ³
Fe	1810	7870	432,9	276
W	3693	19300	269	185
Ni	1728	8900	364	305
Al	933	2702	903	393

Таблица 1. Теплофизические характеристики материалов.

Расчет проводили для следующих условий: диаметр частицы $D=0,1\cdot10^{-3}$ м; скорость v = 100 м/с; температура подложки $T_0 = 300$ К; температура частицы $T_y = T_{nn}$.

Распределение температуры в подложке в момент полной кристаллизации частицы для определения толщины «горячего» слоя при заданном $\Delta T = 30^{\circ}$ получено с помощью компьютерной программы CRISTALL [3,4].

Результаты расчетов. Необходимые для расчетов по формуле (2a) данные для выбранных материалов и заданных условий напыления представлены в таблице 2.

Секция 6. Моделирование физико-химических процессов в современных технологиях. Математическое моделирование.

тиолици 2. У прихтернетики енетемыт пиетици подложки при формировании енлети								
Материал	$S,$ $\mathcal{M}^{2} \cdot 10^{-18}$	h _{гсл,} м·10 ⁻⁷	т _ч , кг·10 ⁻⁹	т _{гсл} , кг·10 ⁻¹⁵	т _{ост} , кг·10 ⁻¹⁰	Т _{срч} , К	Т _{ср гсл} , К	T _{cp ocm} , K
W	1,99	2,19	10,1	1,35	3,53	3246	2784	1534
Ni	1,72	3,1	4,6	1,92	4,53	1561	1379	832
Al	0,11	5,27	1,4	3,26	7,72	879	811	548

Таблица 2. Характеристики системы частица-подложка при формировании сплета.

При получении этих данных принимали, что частица после деформации затвердевании принимает форму цилиндра (сплет) высотой h и диаметром D, S – площадь контакта сплета с подложкой. Тепловой поток нормален к поверхности, объем «горячего» и нагретого слоя определяется контактной площадью S и соответствующей глубиной прогрева подложки h_{2cn} . Результаты расчета составляющих теплового баланса (2) представлены в таблице 3.

Таблица 3. Распределение энергии в системе частица-подложка при кристаллизации сплета.

Материал	<i>W_{к,}</i> Дж∙10 ⁻⁵	<i>Q</i> _{<i>T</i>} , Дж·10 ⁻³	<i>Q</i> _{<i>L</i>,} Дж·10 ⁻³	<i>Q</i> _ч , Дж·10 ⁻³	 Дж·10 ⁻¹⁰	<i>Q_{ocm},</i> Дж∙10 ⁻³
W	5,05	9,21	1,86	5,42	9,14	5,72
Ni	2,33	2,42	1,42	2,14	7,74	1,73
Al	0,71	0,81	0,56	0,74	0,59	0,63

Сравнительный анализ полученных данных показывает, что при выбранной скорости v=100 м/с состояние частицы перед столкновением с подложкой определяется в основном тепловой энергией Q_T , величина которой зависит от температуры плавления материала частицы. В ряду *W*, *Ni*, *Al* эта составляющая энергии частиц возрастает в ≈ 10 раз. Доля кинетической энергии частиц рассматриваемых материалов составляет 0,45% (W), 0.52% (Ni), 3.38% (Al) 3,38% от начальной энергии частицы.

Распределение энергии в системе частица-подложка к моменту затвердевания частицы (максимальный прогрев подложки) показывает, что основная доля энергии распределяется между сплетом и общим объемом нагретой части подложки. На долю «горячего» слоя, ответственного за образование адгезионной связи покрытия с основой, приходится для исследуемых материалов лишь малая доля от общей энергии.

На основании полученных данных можно определить эффективность процесса напыления Э для выбранных материалов и заданных условий напыления, результаты представлены в таблице 4.

$$\Im = \left((W_{\kappa} + Q_{T_{4}} + Q_{L}) / Q_{2CR} \right), \tag{3}$$

Таблица 4. Энергетическая характеристика процессов напыления для разных материалов.

			1
Материал	$W_{\kappa} + Q_{T^{\prime}} + Q_{L,}$ $\mathcal{J}\mathcal{H}^{-3}$	Q _{гсл,} Дж·10 ⁻¹⁰	Э, 10-7
W	11,14	9,15	1,22
Ni	3,87	7,74	0,49
Al	1,36	0,59	2,26

Как показали проведенные расчеты, эффективность процесса напыления, т.е. доля энергии, которая обеспечивает формирование адгезионных связей на контактной границе, оказывается чрезвычайно мала. Это связано с большими потерями энергии на сопутствующие процессы: нагрев газа, оборудования, потери на излучение и др.

Для повышения качества газотермических покрытий (увеличения адгезии) в настоящее время широко используются различные способы ввода дополнительной энергии в поверхностный «горячий» слой подложки (энергетическая активация) – дробеструйная обработка, предварительный подогрев напыляемой поверхности, увеличение скорости напыляемых частиц, использование экзотермических порошков и др.

Список литературы:

1. Борисов Ю.С., Борисова А.Л. Плазменые порошковые покрытия. – К.: Техника, 1986. – 204 с.

2. Кудинов В.В., Бобров Г.В. Нанесение покрытий напыления. Теория, технология и оборудование. Учебник для вузов. – М.: Металлургия, 1992. – 432 с.

3. Митюшова Ю.А., Зенин Б.С. Сравнительный анализ адгезионных и когезионных связей газотермических покрытий. Труды XI Всероссийской школысеминара с международным участием. Томск. НИ ТПУ. – 2011. С. 137–142.

4. Храпковская Ю.А., Зенин Б.С. Энергетическая активация атомов подложки при формировании газотермического покрытия // Современные материалы, техника и технологии в машиностроении: Сборник материалов международной конференции. – 2014. – Т. 1. – С. 22–25.