

собласть научных интересов: геофизическое приборостроение, метрологическое обеспечение геофизических приборов.

Кузьма Анастасия Альбертовна, магистрант кафедры точного приборостроения Института неразрушающего контроля ТПУ.

E-mail: nastena@tpu.ru

Область научных интересов: гироскопические приборы и устройства.

Плеханов Михаил Сергеевич, магистрант кафедры точного приборостроения Института неразрушающего контроля ТПУ.

E-mail: plehanovms@tpu.ru Область научных интересов: гироскопические приборы и устройства.

УДК 531.383

ФИЗИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИВОДА ГИРОСКОПА С МАССИВНЫМ ШАРОВЫМ РОТОРОМ

А.Н. Голиков, А.А. Кузьма, М.С. Плеханов

Томский политехнический университет E-mail: nilis@tpu.ru, nastena@tpu.ru, plehanovms@tpu.ru

В статье рассматриваются вопросы создания пользовательской физико-математической модели электропривода гироскопа с массивным шаровым ротором. Описываемая модель качественно и количественно отображает особенности электромагнитного поля реального гироскопического привода и позволяет оценить некоторые его рабочие характеристики. Модель построена с использованием метода конечных элементов, что позволяет рассчитать параметры привода, используемые для определения рабочих характеристик по его схеме замещения. По результатам моделирования определены некоторые закономерности в распределении магнитной индукции вдоль воздушного зазора в зависимости от величины и количества полюсов статора. Также определены критерии оптимизации конструкции привода. Результаты моделирования планируется использовать в рамках комплексной работы над созданием гироскопического чувствительного элемента, устойчивого к широкому ряду внешних механических и климатических воздействий для забойной инклинометрической системы

Ключевые слова:

Привод гироскопа, моделирование, электромагнитное поле, поверхностный эффект, вихревые токи, метод конечных элементов.

Введение

Основные требования, предъявляемые к приводам гироскопических устройств, – высокая надежность и стабильность угловой скорости, малое тепловыделение и энергопотребление [1]. Моделируемый привод гироскопа предназначен для приведения во вращение массивного шарового ротора. От обычных конструкций такой привод существенно отличается тем, что в качестве ротора используется массивный стальной шар, а следовательно, зазор между статором и ротором привода имеет непостоянное значение по длине пакета статора. Принцип работы такой электрической машины основан на взаимодействии поверхностных (вихревых) токов, наведенных на поверхности ротора, с электромагнитным полем статора [1]. Расчет характеристик привода осложнен достаточно сложным физикоматематическим описанием поверхностных токов и электромагнитных цепей, образуемых ими [2, 3]. Моделирование привода в CAE-системе (Computer-aided engineering, система автоматизации инженерных расчетов) позволяет рассмотреть картину электромагнитного поля такого привода и установить основные закономерности для расчета его рабочих характеристик и оптимизации конструкции. Основная цель моделирования – определить картину электромагнитного поля привода, оценить его основные качественные и количественные характеристики, определить критерии оптимизации конструкции.

Постановка задачи

Моделирование позволяет установить основные закономерности и исследовать особенности работы электропривода с массивным стальным ротором. Точные аналитические расчеты осложнены наличием вихревых токов в теле ротора и ярко выраженного поверхностного эффекта [2, 3]. Расчет двухмерных электромагнитных полей в САЕ-системах основан на использовании метода конечных элементов (finite element method, FEM), при этом все необходимые уравнения «зашиты» в препроцессор.

Для расчетной модели привода необходимы следующие исходные данные:

- 1. Геометрическая модель: поперечное сечение привода.
- 2. Параметры электрической машины.
- 3. Параметры элементов машины.
- 4. Граничные условия: векторный магнитный потенциал (условие Дирихле).

В качестве выходных параметров рассчитываются параметры магнитного поля машины, энергетические характеристики (распределение индукции и напряженности магнитного поля, импеданс, реактивные составляющие токов, ЭДС, силовые и моментные характеристики).

Допускаемые упрощения при моделировании:

- 1. Воздушный зазор в сечении равномерен по всей окружности.
- 2. Влияние лобовых частей обмотки статора минимально.
- 3. Контур вокруг проводника (форма паза) не оказывает влияния на потенциал магнитного поля.
- 4. Магнитная проницаемость материалов статора и ротора постоянная и линейная величина. В табл. 1 приведены необходимые данные для построения модели реальной конструк-

ции привода, описание и некоторые экспериментальные исследования которой приведены в [4].

N⁰	Параметр	Значение
1	Напряжение питания, В, Гц	40; 500
2	Число фаз	3
3	Число пазов статора	12
4	Число полюсов	4
5	Материал статора	сталь 3412
6	Диаметр обмоточного провода (по меди), мм	0,1
7	Количество катушек на фазу	4
8	Количество катушек в пазу	2
9	Количество витков в катушке	150
10	Относительная магнитная проницаемость материала статора	1074
11	Материал ротора	сталь ШХ15
12	Относительная магнитная проницаемость материала ротора	98
13	Диаметр ротора, мм	28,6
14	Величина воздушного зазора, мм	от 0,11 до 0,68
15	Длина пакета и активной зоны ротора, мм	8
16	Условная длина замкнутого контура с током, мм	154
17	Полный ток фазной обмотки, А	0,226

Таблица 1. Параметры привода

Картина электромагнитного поля привода гироскопа

Поскольку ротор выполнен в форме шара, а статор – цилиндрический, зазор в его активной зоне непостоянен – он имеет минимальное значение на экваторе и максимальное по краям пакета статора. Геометрическая модель привода, представляющая два его сечения в экваториальной зоне и на краях пакета, представлена на рис. 1 (a, δ). В табл. 2 представлены дополнительные данные для моделирования, определяющие условия непрерывности решения задач на границах элементов модели и рассчитанные по данным табл. 1 [5]. Параллельное решение этих двух задач позволяет оценить качественные и количественные изменения характеристик привода.

Рис. 1. Поперечные сечения привода: *а* – экваториальная зона ротора, зазор 0,11 мм; *б* – по краям пакета статора, зазор 0,68 мм

Таблица 2.	Дополнительные	параметры для	создания модели
------------	----------------	---------------	-----------------

N₂	Параметры	Значение
1	Функция векторного магнитного потенциала, Вб/м	0,0005719x + 0,0005719y
2	Векторный магнитный потенциал по оси z, Вб/м	$1,0785 \cdot 10^{-8}$

Рис. 2. Картина электромагнитного поля привода: *а* – в экваториальном сечении ротора; *б* – в сечении по краям пакета статора

На рис. 2 (a, δ) показаны результаты моделирования привода в рассматриваемых сечениях – экваториальном и по краям пакета статора соответственно. Картина построена при задании граничного условия, соответствующего наличию на поверхности ротора векторного магнитного потенциала, создаваемого соответствующими обмотками. Это условие позволяет построить картину поля с учетом проникновения вихревых токов в тело ротора [3]. Как видно из рис. 2 (a, δ), наличие эффекта вытеснения вихревых токов в тонкий поверхностный слой ротора оказывает сильное влияние на распределение индукции в зазоре. По предварительным оценочным расчетам [4], величина вихревых токов на поверхности ротора может достигать значений в пределах 5–7 А в зоне полюсных делений. Как видно из рис. 2 δ , при работе привода наблюдается так называемый эффект затягивания – явление смещения поля статора в воздушном зазоре при взаимодействии с поверхностными токами ротора, что обуславливает увеличение скольжения по сравнению с другими конструкциями асинхронных машин переменного тока [1, 2].

Распределение индукции вдоль воздушного зазора по длине окружности ротора – один из важнейших параметров, необходимых для расчета элементов схем замещения и определяющий качественные показатели привода. В идеальном случае это распределение должно иметь синусоидальную форму [1]. На практике из-за присутствия высших гармоник вращающегося

Серия Инженерные науки

магнитного поля индукция в зазоре имеет сильные искажения, что влияет на его энергетические характеристики – площадь фигуры, образуемой кривой, численно равна затраченной энергии, поскольку соответствует распределению магнитодвижущей силы (МДС) [1, 5].

При моделировании привода выявлено наличие высших гармоник в распределении индукции в зазоре с большой амплитудой, вызванное наличием вихревых токов. Графики распределения индукции в воздушном зазоре в экваториальной зоне и по краям пакета статора показаны на рис. 3 (a, δ) соответственно.

Рис. 3. Распределение индукции в воздушном зазоре: *а* – экваториальное сечение; *б* – сечение по краям пакета

Для стабилизации угловой скорости и уменьшения скольжения в приводах гироскопов с бесконтактными подвесами шаровых роторов обычно рекомендуется увеличение числа полюсов, поскольку это приводит к уменьшению уводящих моментов, действующих со стороны статора [1]. Для исследования качественных характеристик электромагнитного поля при различном количестве полюсов были построены модели с одной и тремя парами полюсов. При создании моделей параметры питающего напряжения, обмоточные данные оставлены неизменными. Для модели с тремя парами полюсов было изменено количество пазов с сохранением их геометрической формы. Полученные в результате моделирования картины электромагнитного поля привода показаны на рис. 4 (a, δ).

Рис. 4. Картины электромагнитного поля привода при разном количестве пар полюсов: *a* – 1 пара; *б* – 3 пары

Серия Инженерные науки

Распределение индукции вдоль воздушного зазора для привода с одной парой и с тремя парами полюсов показаны на рис. 5 (*a*, *б*) соответственно.

Рис. 5. Распределение индукции в воздушном зазоре привода при разном количестве пар полюсов: *a* – 1 пара; *б* – 3 пары

В табл. 3 приведены параметры магнитной индукции для различных моделей, показанных на рис. 2 *a*, рис. 4 (*a*, *б*).

Таблица З. Г.	Іараметры	ы привода	с различным	числом пар	полюсов

Параметр		Число пар полюсов		
		2	3	
Максимальная индукция в зазоре, Тл	1,76	1,76	1,38	
Минимальная индукция в зазоре, Тл	0,0045			
Максимальная плотность вихревого тока, A/м ²	A/M^2 1,84.10 ⁸			

По результатам моделирования и графикам распределения индукции в воздушном зазоре привода при разном количестве пар полюсов можно сделать следующие выводы:

- 1. Распределение индукции воздушном зазоре по основной гармонике соответствует синусоидальному, но подвержено сильному влиянию высших гармоник.
- 2. Увеличение числа пар полюсов также приводит к улучшению энергетических характеристик привода в экваториальной зоне – увеличивается составляющая вращающегося магнитного поля, уменьшается составляющая, приводящая к нагреву ротора, вызванного наличием эффекта вытеснения тока ротора в поверхностный слой.
- 3. Дополнительное влияние на характеристики распределения индукции накладывает эффект смещения поля статора в воздушном зазоре, выражающийся наличием минимального равномерного значения индукции в зонах полюсов, образуемых положительным направлением тока в проводниках.
- 4. Увеличение числа полюсов снижает влияние эффекта смещения поля статора на распределение магнитной индукции в воздушном зазоре.

Для оптимальной работы привода гироскопа необходимо добиться максимального приближения кривой, показанной на рис. 3, a и δ и рис. 5, a и δ , к синусоиде. Для этого необходимо существенно изменить конструкцию статора. В частности, на основании графиков распределения индукции по воздушному зазору приводу можно сделать вывод, что увеличение числа полюсов приводит к сглаживанию основной гармоники. При этом возникает противоречие, поскольку для поддержания оптимальной работы подвеса и обеспечения свойств гироскопа необходимо обеспечить скорость не менее 20 000 об/мин, что невозможно при сохранении частоты питающей частоты, а при более высоких частотах будет существенно увеличиваться нагревание ротора, что может привести к поломке прибора. Кроме того, ввиду малых габаритов ротора существенное наращивание числа полюсов сопряжено с большими трудностями в изготовлении статора при сохранении трехфазного питающего напряжения. Следовательно, необходимо рассматривать возможность изготовления многополюсного статора с двухфазным или однофазным напряжением питания повышенной частоты. По результатам исследования поставлены следующие задачи для разработки оптимальной конструкции привода:

- 1. Увеличение числа полюсов статора с подбором оптимальных параметров питающего напряжения.
- 2. Селекция материалов ротора с оптимальным соотношением относительной магнитной проницаемости и электропроводности.
- 3. Уменьшение воздушного зазора между ротором и статором.
- 4. Уменьшение длины пакета статора с расточкой активной зоны по диаметру ротора.
- 5. Введение схем векторного управления для оптимизации энергетических параметров привода. Дальнейшее моделирование, расчет и оптимизация характеристик привода требуют пе-

рехода от двухмерного моделирования к пространственному, поскольку для этого необходимо решение целого комплекса физических и технических задач. В частности, это касается учета потерь, вызванных наличием лобовых частей обмоток статора, моделирования системы бездатчикового управления питанием привода, системы управления положением ротора относительно выбранной системы координат.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хрущев В.В. Электрические микромашины автоматических устройств. Л.: Энергия, 1976. 384 с.
- 2. Куцевалов В.М. Асинхронные и синхронные машины с массивными роторами. 2-е изд., перераб. и доп. М.: Энергия, 1979. 160 с.
- 3. Ламмеренер Й., Штафль М. Вихревые токи: пер. с чешского. М.; Л.: Энергия, 1967. 208 с.
- Голиков А.Н., Кузьма А.А., Плеханов М.С. Разработка и некоторые исследования для гироскопа с газодинамическим подвесом шарового ротора // Контроль и диагностика. – 2012. – № 13. – С. 167–172.
- 5. Копылов И.П. Математическое моделирование электрических машин: учебник для вузов. 3-е изд., перераб. и доп. М.: Высшая школа, 2001. 327 с.

Поступила 07.07.2014 г.