

вич, канд. физ.-мат. наук, доцент кафедры промышленной и медицинской электроники Института неразрушающего контроля ТПУ, научный сотрудник лаборатории квантовой электроники Института оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск.

E-mail: gubarevfa@tpu.ru Область научных интересов: физика лазеров, лазеры на парах металлов, газовый разряд.

УДК 621.373.826.038.823

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ГЕНЕРАЦИИ ЛАЗЕРА НА ПАРАХ БРОМИДА МЕДИ ПРИ ПЕРЕДАЧЕ ИНФОРМАЦИИ

А.Е. Дегтярев¹, Ф.А. Губарев^{1,2}

¹Томский политехнический университет ²Институт оптики атмосферы СО РАН, г. Томск E-mail: gubarevfa@tpu.ru

В работе представлен вариант реализации беспроводной передачи данных при помощи импульсного газового лазера на парах бромида меди. Продемонстрирована возможность частотноимпульсной модуляции излучения лазера на парах бромида меди в соответствии с цифровым кодом, поступающим с персонального компьютера. Для передачи логической единицы период повторения импульсов накачки лазера уменьшался, для передачи логического нуля – увеличивался. Показано, что изменение периода повторения импульсов на 1 мкс уже оказывает заметное влияние на мощность генерации. Представлены экспериментальные результаты по влиянию модуляции импульсов возбуждения на электрические параметры работы газоразрядной трубки и мощность генерации лазера на парах бромида меди при различной величине отклонения периода повторения импульсов от периода несущей частоты.

Ключевые слова:

Оптическая связь, загоризонтная связь, беспроводная связь, лазер на парах бромида меди, частотная модуляция излучения.

Одной из беспроводных технологий передачи данных является связь по оптическому каналу. Линию связи, в которой оптический сигнал распространяется в атмосфере, называют атмосферно-оптической линией связи (АОЛС). Возможны два варианта реализации канала АОЛС: когда передатчик и приемник излучения располагаются в зоне прямой видимости и вне зоны прямой видимости (в том числе загоризонтная связь) [1–6]. В загоризонтной связи используется сигнал, отраженный от атмосферных объектов, например аэрозолей. Такая система позволяет передавать информацию на большие расстояния. Наиболее длинная известная авторам АОЛС реализована между островом Тасмания и материковой Австралией и составляет 288 км [2]. Авторами работы [2] реализована передача данных в режиме частотно-импульсной модуляции с несущей частотой 1 кГц. В качестве передатчика применялся блок сверхярких светодиодов.

Одним из источников излучения для АОЛС может являться импульсный лазер на парах металла. Данный тип лазеров характеризуется высокой энергией в импульсе генерации при относительно низкой средней мощности [7], что дает возможность получения сигнала-отклика, достаточного для устойчивого приема с использованием фотоэлектронного умножителя (ФЭУ) [6]. При этом частота следования импульсов генерации лазеров на парах металлов достигает сотен килогерц [7].

Впервые частотно-импульсное кодирование излучения лазера на парах бромида меди было реализовано в работе [5]. В работе [6] сообщается об успешной реализации АОЛС с использованием данного типа лазеров и передаче текстовой информации в цифровом формате на расстояние более 10 км. Авторами работы [6] отмечается наличие ошибок при передаче информации, связанных с изменением оптической плотности атмосферного объекта (дымового шлейфа) или аппаратурными ошибками. Возможной причиной ошибок может являться изменение энергии в импульсах генерации лазера в процессе передачи информации. Меньшей энергии в импульсе генерации будет соответствовать меньшее соотношение сигнал/шум при приеме. В связи с этим целью данной работы являлось исследование влияния передаваемой информации, т. е. изменений периода следования импульсов в процессе передачи информации, на энергию генерации CuBr-лазера.

Схема экспериментальной установки приведена на рис. 1. В качестве источника излучения использовался лазер на парах бромида меди, аналогичный применяемому в работе [6] и исследованному в работах [8, 9]. Активная область газоразрядной трубки (ГРТ) имела 90 см в длину и 5 см внутреннего диаметра. Применялся независимый нагрев активной зоны ГРТ и контейнеров, что обеспечивало постоянный температурный режим независимо от параметров возбуждения. Средняя мощность генерации при частоте следования импульсов (ЧСИ) 19,2 кГц и мощности накачки 1,2 кВт (мощность, потребляемая импульсным источником питания от сети) составляла 5,1 Вт. Активная добавка НВг, часто применяемая для повышения средней мощности генерации [7], в данной работе не использовалась. Источник накачки лазера реализован на основе схемы прямого разряда накопительного конденсатора через тиратрон. Заряд накопительного конденсатора в данной схеме осуществляется импульсно и управляется микроконтроллером [10]. Схема управления источником накачки имеет вход синхронизации, позволяющий контролировать период следования импульсов возбуждения.

Рис. 1. Схема эксперимента: 1 – лазер; 2 – фотоприемник; 3 – датчик тока; 4 – высоковольтный щуп; 5 – импульсный источник питания; 6 – осциллограф; 7 – персональный компьютер; 8 – интерфейс

В работе использовалась следующая измерительная аппаратура: измеритель средней мощности Ophir 30C-SH, датчики тока Pearson Current Monitors 8450, пробник напряжения Tektronix P6015A, коаксиальный фотоэлемент ФК-22, осциллограф LeCroy WJ-324.

Для формирования импульсов запуска для лазера изготовлен интерфейсный блок 8 (рис. 1) на основе микроконтроллера AVR Atmega16 [11]. Передача данных между интерфейсным блоком и персональным компьютером или ноутбуком осуществляется по каналу USB, реализованному с использованием микросхемы FT232RL [12]. Формируемые блоком синхросигналы для запуска лазера передаются посредством оптоволоконного передатчика HFBR-1522 [13]. Применение гальванической развязки вызвано необходимостью защиты от высокочастотных помех, генерируемых лазером в процессе работы.

Система управления, построенная с использованием микроконтроллера, позволяет осуществлять работу лазера в двух режимах: в обычном режиме и режиме передачи данных. В обычном режиме генератор формирует импульсы запуска для лазера с постоянным периодом повторения, соответствующим несущей частоте (рис. 2, a). Данный режим использовался во время разогрева лазера и выхода на номинальный режим генерации. Исследования проводились при несущей частоте 19,2 кГц (период 52 мкс).

В режиме передачи генератор принимает данные в ASCII кодах (буквы и цифры) с персонального компьютера и в зависимости от того, какие данные передаются, изменяет время между импульсами. Если передается логическая единица, то период уменьшается, если передается логический ноль, то увеличивается. На рис. 2, б показана последовательность импульсов напряжения на ГРТ и генерации при передаче числа #AAh (ASCII код), равного #10101010b (в бинарном коде), которая демонстрирует, как кодируются логические «1» и «0», а именно как изменяется период следования импульсов накачки и генерации в процессе передачи информации. Поскольку при передаче данных изменяется время между импульсами, для устойчивой синхронизации осциллографа интерфейсным блоком формируется дополнительный импульс синхронизации перед началом передачи байта информации.

Рис. 2. Осциллограммы в обычном режиме (*a*) и в режиме передачи данных (*б*): *1* – напряжение на ГРТ лазера (5 кВ/дел.); *2* – импульсы синхронизации (5 В/дел.); *3* – последовательность импульсов генерации (отн. ед.)

В работе рассмотрены три варианта частотно-импульсной модуляции излучения с разным отклонением ΔT от периода несущей частоты: 4, 2 и 1 мкс. В табл. 1 приведены параметры частотно-импульсного кодирования генерации CuBr-лазера при передаче логического «0» и логической «1». Для всех режимов передачи данных время между импульсами для старт-бита составляло 58 мкс.

Несущая частота, кГц	Δ <i>Т</i> , мкс	Время между импульсами при фор- мировании		Энергия в импульсе генерации при передаче	
		0	1	0	1
		мкс		мкДж	
19,2	1	53	51	271	260
	2	54	50	265	244
	4	56	48	275	234

Таблица 1. Параметры частотно-импульсного кодирования генерации CuBr-лазера

На рис. 3 приведены результаты исследования цугового режима для ГРТ диаметром 3,5 см и длиной активной зоны 56 см, исследованной ранее в работе [14]. Как следует из графика, наблюдается снижение энергии генерации в первых импульсах после паузы, которое мы связываем со снижением концентрации атомов меди в основном состоянии. Для представленной на рис. 3 зависимости можно записать аппроксимирующую кривую и оценить, насколько уменьшится пиковая мощность импульса генерации при изменении задержки между импульсами от 48 до 56 мкс. Расчеты показывают, что энергия в импульсе генерации должна варьироваться в пределах ~ 6 %.

Рис. 3. Зависимость пиковой мощности генерации в первом импульсе цуга от паузы между цугами

На рис. 4–6 представлены осциллограммы работы лазера при цикличной передаче числа #10101010b при различных величинах ΔT . По осциллограммам мгновенной мощности генерации рассчитана энергия в импульсе. Калибровка показаний ФК-22 осуществлялась по средней мощности генерации в обычном режиме. Значения энергии в импульсе генерации представлены в табл. 1. Наибольшая разницы энергии генерации $\Delta E = 41$ мкДж (17 %) наблюдается при наибольшем $\Delta T = 4$ мкс, что отличается от приведенных выше оценок. При $\Delta T = 1$ мкс, как в работе [6], $\Delta E = 11$ мкДж (4 %). Причем энергия генерации возрастает с увеличением межимпульсного периода.

В табл. 2 представлены значения энергии генерации в импульсах при передаче чисел #11h (#00010001b) и #77h (#01110111b) при $\Delta T = 4$ мкс. Из полученных данных следует, что энергия генерации, соответствующая логическому «0» (или логической «1»), меняется менее чем на 6 % при передаче слов с различным количеством логических «0» (логических «1»). Таким образом, можно сделать вывод, что в представленных экспериментах концентрация атомов меди не является основной причиной снижения энергии в импульсах генерации.

Рис. 4. Осциллограммы импульсов генерации при передаче «0» (*a*) и «1» (б) при $\Delta T = 1$ мкс

Рис. 5. Осциллограммы импульсов генерации при передаче «0» (*a*) и «1» (б) при $\Delta T = 2$ мкс

Рис. 6. Осциллограммы импульсов генерации при передаче «0» (*a*) и «1» (δ) при $\Delta T = 4$ мкс

Таблица 2. Энергия в импульсах генерации при циклической передаче чисел #11h, #77h

Число	Генерация, мкДж						
1110.110		1					
#11h	276	260	265	245			
	Генерация, мкДж						
	0	1					
#77h	271	245	255	253			

Снижение энергии генерации можно объяснить увеличением концентрации электронов и атомов меди в метастабильном состоянии при уменьшении периода повторения импульсов, даже если период уменьшается незначительно. Об увеличении концентрации электронов свидетельствует уменьшение напряжения на ГРТ при передаче логической «1» (рис. 7).

Рис. 7. Осциллограммы импульсов напряжения на ГРТ (2 кВ/дел) при передаче «0» (*a*) и «1» (δ) при $\Delta T = 1$ мкс

Итак, в работе представлен вариант реализации беспроводной передачи данных при помощи импульсного газового лазера на парах бромида меди. Продемонстрирована возможность частотно-импульсной модуляции излучения CuBr-лазера в соответствии с цифровым кодом, поступающим с персонального компьютера.

При передаче данных с использованием описанной техники следует иметь в виду, что в зависимости от режима передачи может наблюдаться существенное (до 17 %) отличие энергии генерации при передаче логического «0» и «1». Учитывая столь существенное изменение энергии в импульсе генерации, можно сделать вывод, что для задач загоризонтной связи, где энергия в импульсе является критическим параметром, необходимо уменьшать разницу периода повторения импульсов при кодировании «0» и «1» с целью обеспечения примерно одинакового уровня энергии в импульсах генерации.

Авторы выражают благодарность профессору Томского политехнического университета Г.С. Евтушенко за интерес к работе и полезные комментарии. Исследование выполнено за счет гранта Российского научного фонда (проект № 14-19-00175).

СПИСОК ЛИТЕРАТУРЫ

- 1. Украинцев Ю.Д., Цветов М.А. История связи и перспективы развития телекоммуникаций. – Ульяновск: УлГТУ, 2009. – 128 с.
- 2. Moncur R., Smith D., Gelston J., Giles-Clark J. 288 km Cloud bouce from Tasmania to the Australian Mainland. URL: http://reast.asn.au/optical/288_km_Cloudbouce_from_Tasmania_to_the_Australian_Mainland.pdf (дата обращения 04.07.2014).
- 3. Mooradian G.C., Geller M., Levine P.H., Stotts L.B., Stephens D.H. Over-the-horizon optical propagation in a maritime environment // Applied Optics. 1980. V. 19 (1). P. 11–30.
- 4. Милютин Е.Р. Загоризонтные оптические линии связи // Вестник связи. 2005. № 4. С. 196–199.
- Васильев А.С., Губарев Ф.А., Федоров В.Ф. Передача информации с использованием лазера на парах бромида меди // Современные техника и технологии: XVII Международная научно-практическая конференция студентов, аспирантов и молодых ученых, Томск, 18– 22 апреля 2011. – Томск: Изд-во Томского политехнического университета, 2011. – Т. 1. – С. 166–167.
- Атмосферные бистатические каналы связи с рассеянием. Часть 1. Методы исследования / В.В. Белов, М.В. Тарасенков, В.Н. Абрамочкин и др. // Оптика атмосферы и океана. – 2013. – Т. 26. – № 4. – С. 261–267.

- Евтушенко Г.С. Шиянов Д.В., Губарев Ф.А. Лазеры на парах металлов с высокими частотами следования импульсов. – 2-е изд. – Томск: Изд-во Томского политехнического университета, 2012. – 276 с.
- Gubarev F.A., Evtushenko G.S., Vuchkov N.K., Sukhanov V.B., Shiyanov D.V. Modeling technique of capacitive discharge pumping of metal vapor lasers for electrode capacitance optimization // Review of Scientific Instruments. – 2012. –V. 83. – P. 055111–055115.
- 9. Влияние индуктивности разрядного контура на энергетические характеристики CuBrлазера / Ф.А. Губарев, М.В. Тригуб, К.В. Федоров, Г.С. Евтушенко // Оптика атмосферы и океана. – 2013. – Т. 26. – № 7. – С. 604–609.
- 10. Стабилизированный лазер на бромиде меди с автоматизированным управлением режимами работы со средней мощностью генерации 20 Вт / В.А. Димаки, В.Б. Суханов, В.О. Троицкий, А.Г. Филонов // Приборы и техника эксперимента. 2012. № 5. С. 95–99.
- 11. 8-bit AVR Microcontroller with 16K Bytes In-System Programmable Flash. URL: http://www.atmel.com/Images/doc2466.pdf (дата обращения 04.07.2014).
- 12. Future Technology Devices International Ltd. FT232RUSBUARTIC. URL: http://pdf.datasheet.su/ftdi/ft232rl.pdf (дата обращения 04.07.2014).
- 13. HFBR-0500Z Series. Versatile Link. The Versatile Fiber Optics Connection. URL: http://www.avagotech.com/docs/AV02-1501EN (дата обращения 04.07.2014).
- 14. Восстановление молекул бромида меди в плазме CuBr-лазера в межимпульсный период / С.Н. Торгаев, Ф.А. Губарев, А.М. Бойченко и др. // Известия высших учебных заведений. Физика. – 2011. – Т. 201. – № 2. – С. 81–84.

Поступила 06.10.2014