ИНФОРМАЦИОННАЯ СИСТЕМА УПРАВЛЕНИЯ ЭКОЛОГО-ГЕОБОТАНИЧЕСКИМИ И ПРОСТРАНСТВЕННЫМИ ДАННЫМИ С ИСПОЛЬЗОВАНИЕМ ГИС GOOGLE EARTH И GOOGLE MAPS

Щукова К.Б.

Научные руководители: Токарева О.С., Мирошниченко Е.А. Национальный исследовательский Томский политехнический университет embrre@yandex.ru

Введение

В результате изучения ландшафта местности накапливаются большие объемы текстовых, графических, а также пространственных данных.

В связи с этим в последнее время наблюдается возрастающий интерес к ГИС-технологиям, как инструменту, позволяющему осуществлять картирование растительного покрова ДЛЯ мониторинга и оценки его состояния [1], составление ландшафтных и лесных карт, а также планов лесонасаждений, в том числе на основе данных дистанционного зондирования Земли из космоса, 2D и 3D-моделирование ландшафта местности пространственный разнородных данных [2].

В [5] описана структура ранее разработанной базы данных и функциональные возможности информационной системы (ИС) для ведения базы данных (БД) геоботанических описаний при изучении ландшафта.

Цель работы

Целью работы является модернизация структуры базы эколого-геоботанических данных для работы с пространственными объектами, расширение функциональных возможностей информационной системы, представленной в [5], и реализация локального геосервера для интеграции веб-сервисов Google Earth и Google Maps в разработанную ИС.

Методы решения поставленных задач

Для проектирования информационной системы использован нисходящий метод функционального моделирования в нотации IDEF0, для формирования структуры концептуальной модели данных — объектный подход, для интеграции разнородных данных — метод федерализации и распространения данных, для реализации системы — методы объектно-ориентированного программирования.

При разработке ИС использованы современные технологии, такие как языки программирования С#, JavaScript, HTML и CSS, СУБД – MS SQL Server 2008, технология доступа к данным – ADO.NET, среда проектирования физической и логической модели БД – Toad Data Modeler 5.2, платформа – .NET Framework 4.5.

Описание полученных результатов

Исследованы эколого-климатическая и геоботаническая области знаний с позиции информационного обеспечения деятельности этих сфер. На этапе проектирования БД определены взаимосвязи и семантика между

геоботаническими объектами, а также выявлены типовые структуры в их описании.

Разработанная БД содержит 41 таблицу, среди которых 22 справочника. Справочники предназначены для хранения часто вводимых названий, что облегчает работу пользователей и позволяет избежать разночтений при дальнейшем анализе данных. БД позволяет хранить не только эколого-геоботанические, но и пространственные характеристики объектов.

Расширенная физическая схема БД приведена на рисунке 1.

Рис. 1. Расширенная физическая схема БД Для хранения геометрии пространственных объектов и географических координат использованы типы данных — geometry и geography, поддерживаемые в выбранной СУБД.

Разработанная ИС включает следующие основные подсистемы:

- 1. Подсистема сбора, обработки и загрузки данных.
- 2. Подсистема управления данными.
- 3. Подсистема формирования отчетности.
- 4. Подсистема визуализации данных.
- 5. Подсистема резервного копирования.
- 6. Подсистема картографирования.
- В подсистеме картографирования интегрированы ГИС Google Earth и Google Maps.

ИС обладает клиент-серверной архитектурой под управлением реляционной БД.

Добавлены следующие функциональными возможности в ИС, описанную в [5]:

- 1. импорт/экспорт данных из GPS-файлов и MS Excel в реляционную БД;
- 2. функции управления экологогеоботаническими и пространственными данными (добавление, удаление, обновление, поиск, фильтрация);
- 3. ведение эколого-геоботанических бланков с сохранением данных в БД;
- 4. многопользовательский доступ к данным;

- 5. генерация отчетов в формате MS Word и Excel;
- валидация данных, в том числе проверка орфографии;
- 7. резервное копирование БД и восстановление БД из резервной копии;
- 8. создание меток, 2D и 3D-моделей местности, смешанных геометрических слоев (полигональный, точечных, полилинейных), тематических карт, путей, маршрутов наземных исследований на картах Google Earth и Google Maps с сохранением в БД.

Поддержка многопользовательского доступа к БД обеспечивает параллелизм работы и целостность данных.

Предложен принцип интеграции экологопространственных данных c геоботанической информацией, также информационного системы взаимодействия обеспечения с ГИС Google Earth и Google Maps посредством разработки алгоритма локального геосервера.

На рисунке 2 представлена схема взаимодействия ИС с ГИС Google Earth и Google Maps.

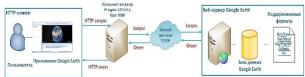


Рис. 2. Схема взаимодействия ИС с Google Earth и Google Maps

Взаимодействие клиента с веб-сервером Google Earth осуществляется посредством передачи НТТР-запросов и ответов локальному геосерверу, который обеспечивает коммуникацию между клиентом и веб-сервисом Google Earth и Google Maps. Таким образом, локальный геосервер является связующим звеном между пользователями Google Earth и веб-сервером Google Earth, а также обеспечивает общение между ними.

В качестве НТТР-клиента выступает настольное приложение, а в качестве локального геосервера – компьютер, на котором установлено приложение. Запросы от локального геосервера к веб-серверу Google Earth передаются посредством сетевого протокола TCP/IP. Аналогичным образом поступают ответы от веб-сервера Google Earth на локальный геосервер.

Такой локальный геосервер позволяет устранить проблемы доступа к данным, возникающие между JavaScript и локальной файловой системы, через HTTP-соединения.

Данный геосервер поддерживает ограниченное число форматов файлов и изображений: .txt, .html, .kml, .xml, .kmz, .jpg, .png, .gif, .collada.

Геосервер использует версию HTTP 1.1. По умолчанию сервер принимает соединения только от пользователей Google Earth.

Примеры функционирования системы приведены на рисунках 3.

Рис. 3. Рабочее окно подсистемы картографирования

Заключение

Результатом выполненной работы является информационная система, включающая модернизированную базу экологогеоботанических и пространственных данных и позволяющая автоматизировать традиционную работу с большими объемами разнородных данных, а также процессы картографирования и моделирования. Следует отметить, что на данный момент выпущен продукт R тестовую эксплуатацию для Института степи УрО РАН.

Автор выражает благодарность сотруднику Института степи Уральского отделения РАН, Калмыковой О. Г., за предоставленные эколого-геоботанические материалы, а также обсуждение функциональных возможностей ИС.

Литература

- 1. Зверев А.А. Информационные технологии в исследованиях растительного покрова: Учебное пособие. Томск: ТМЛ-Пресс, 2007. 304 с.
- 2. Попов С.Ю. Геоинформационные системы и пространственный анализ данных в науке о лесе. Санкт Петербург: Интермедия, 2013. 400 с.
- 3. Hennekens M. Stephan, Schaminee H.J. Joop. TurboVEG, a comprehensive data base management system for vegetation data // Journal of Vegetation Science. 2011. V. 12. P. 589-591.
- 4. Lubomír Tichý. Juice, software for vegetation classification // Journal of Vegetation Science. 2002. V. 13. P. 451-453.
- 5. Щукова К. Б. Создание информационной системы для ведения базы данных Геоботанических описаний пробных площадей при изучении ландшафта [Электронный ресурс] // Молодежь и современные информационные технологии: сборник трудов XII Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых: в 2 т., Томск, 12-14 Ноября 2014. Томск: ТПУ, 2014 Т. 2 С. 68-69.