

Рис. 1. Результат

• JPEG – это алгоритм сжатия с потерями данных, поэтому после сжатия, мы можем получить другое изображение, качество которой хуже чем исходное изображение.

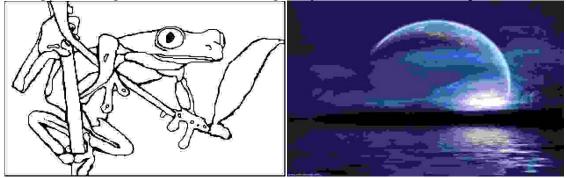


Рис. 2. Изображение после сжатия

Список литературы

- 1. http://habrahabr.ru/post/132289/
- 2. http://habrahabr.ru/post/116697/
- 3. http://habrahabr.ru/post/141827/
- 4. http://algolist.manual.ru/compress/
- 5. http://fic.bos.ru/articles/MLovic APetrovCodecTest.php

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МЕТОДОВ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ В ЛОКАЛЬНЫХ СЕТЯХ

В.В. Чемерилов, Е.С. Чердынцев (г. Томск, Томский политехнический университет)

APPLICATION OF MODERN METHODS LOAD DISTRIBUTION IN LANS

V.V. Chemerilov, E.S. Cherdinthev. (Tomsk, Tomsk Polytechnic University)

Abstract. This article describes the use of method of load balancing with purpose to increase bandwidth network.

Введение. С развитием техники и разработкой нового программного обеспечения большинство компании вынуждено переходить на сети, способные выдержать большую нагрузку. Однако не все могут позволить себе перейти на более высокопроизводительную сеть в силу высоких затрат на покупку современного оборудования. Сознавая это, разработчики технологических решений для увеличения пропускной способности сети предлагают пользователям использовать различные методы: применение дуплексного режима передачи данных

в сетях Ethernet, коммутация пакетов в сетях Token ring и т. д. [1] Одним из таких методов является равномерное распределение нагрузки между узлами сети.

Модель сети. Алгоритм распределения нагрузки на сеть был применен для модели сети, построенной с помощью менеджера виртуальных машин Oracle Virtual Box, основанной на модели сети, построенной в программе cisco packet tracer.

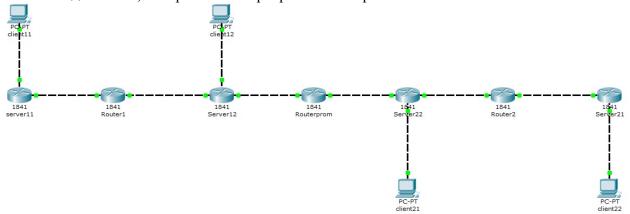


Рис. 1. Модель сети, построенная в программе cisco packet tracer.

Модель сети состоит из 11 узлов:

- 1. Узлы client11, client12, client21, client22 используется в качестве клиентских машин.
- 2. Узлы server11,server12,server21,server2 используются в качестве серверных машин.
- 3. Узлы router1, router2, routerprom используются в качестве маршрутизаторов.

Измерение параметров модели сети. Пропускная способность локальной сети определяется физической средой передачи данных [2]. В данной локальной сети пропускная способность (нагрузка на сеть) равна 10 Мбит/сек.

На практике обычно используют такое понятие, как максимально полезная пропускная способность. Эта величина индивидуальна для каждой сети и определяется эмпирическим путем. Далее была определена максимальная полезная нагрузка для узла Routerprom (при этом все DNS-запросы отправляются на первый DNS-сервер). С помощью файлового менеджера был передан файл размером 500 МБ с машины client11 на машину client22, чтобы загрузить узел routerprom. Не дожидаясь окончания передачи, была передана копия этого файла с машины client12 на машину client21 и т. д. В определенный момент времени начинается потеря кадров в силу большой нагрузки, при этом скорость передачи данных равна V_{1pr} = 9.21 Мбит/сек. Это и будет максимально полезная пропускная способность сети.

Применение метода распределения нагрузки на сеть. Для снижения нагрузки на узел routerprom был выбран адаптивный алгоритм распределения нагрузки — алгоритм принятий решений с использованием нечеткой логики [3]. Для данного алгоритма параметры пропускной способности канала (BW), доступность соединения или количество текущих подключений к серверу (CON) и доступность носителя информации (HD) являются входными параметрами. Он состоит из 3 этапов:

- 1. Входные параметры преобразуются в соответствующие значения нечеткой логики согласно функциям принадлежности. Для каждого входного параметра определяются три функции принадлежности. К примеру, для параметра BW определяются: LBW низкое количество принадлежности для пропускной способности канала, MBW среднее значение принадлежности и HBW высокое значение соответственно [3].
- 2. Вычисляются правила на основе 9 функции принадлежности (HBW, LBW, MBW, LBW, HHD, MHD, LHD, HCON, MCON, LCON). Рассматриваются все комбинации функций принадлежности и для каждой применяется нечеткое решение из 4 возможных:
 - Настоятельно рекомендуемый сервис (Yes, Y).
 - Рекомендуемый сервис (Probably Yes, PY)
 - Не рекомендуемый сервис (Probably No, PN)
 - Настоятельно не рекомендуемый сервис (No,N)

3. Каждому решению назначается набор взвешенных решений, каждое из которых представляет собой различный набор весов. Итоговое значение (Crips Value – CV) вычисляется на основе весов и нечетких решений.

Каждый сервер вычисляет собственное значение CV. Сервер с самым высоким значением CV является предпочтительным для достижения оптимальной нагрузки.

Для реализации алгоритма на виртуальных машинах было установлено дополнительное ПО (проведена автоматизация установки и настройки на все виртуальные машины).

После установки и настройки ПО на все узлы сети была повторно измерена полезная пропускная способность. В этот раз потеря кадров начнется при $V_{2pr} = 9,68$ Мбит/сек (определяется предпочтительный DNS-сервер и DNS-запросы отправляются на него). Далее был рассчитан коэффициент использования сети до использования алгоритма распределения нагрузки и после:

$$\begin{split} \eta_1 = & \frac{V_{1pr}}{V_{max}} = \frac{9,21~M\text{бит}\,/\,c}{10~M\text{бит}\,/\,c} = 0,921 \\ \eta_2 = & \frac{V_{2pr}}{V_{max}} = \frac{9,68~M\text{бит}\,/\,c}{10~M\text{бит}\,/\,c} = 0,968 \end{split}$$

Во втором случае коэффициент использования сети больше, чем в первом ($\eta_2 > \eta_1$). Узел routerprom может выдержать большую нагрузку.

Заключение. Методы распределения нагрузки сети также рекомендуется применять не только в высоконагруженных сетях, но и в обычных небольших сетях. Коэффициент использования сети возрастет и ее работоспособность увеличится.

Список литературы

- 1. Увеличение производительности локальных сетей [Электронный ресурс] Режим доступа: http://www.pcmag.ru/issues/detail.php?ID=10677, свободный.
- 2. Расчет нагрузки на сеть, пропускная способность сети [Электронный ресурс]. Режим доступа: http://rudocs.exdat.com/docs/index-34044.html, свободный.
- 3. Лихобабин С.М., Абрамов В. Г., Алгоритмы балансировки нагрузки в сети доставки контента. М., 2013.-61 с.
- 4. Таненбаум Э., Уэзеролл Д.,. Компьютерные сети. 5-е изд. СПб.: Питер, 2012. 960 с.
- 5. Олифер В., Олифер Н., Компьютерные сети. Принципы, технологии, протоколы: учебник для вузов. 4-е изд. –l СПб.: Питер, 2010. –l 944 с.