ТЕСТИРОВАНИЕ КОМБИНАЦИОННЫХ СХЕМ С НЕИСПРАВНОСТЬЮ ТИПА ЗАДЕРЖКА ПУТИ

П.Е. Селиванов (г. Томск, Томский политехнический университет) E-mail: paulishere@mail.ru

PATH DELAY FAULT TESTING FOR COMBINATIONAL CIRCUITS

P.E. Selivanov (Tomsk, Tomsk Polytechnik University)

Abstract. In this paper the problems of path delay faults are analyzed. Multi-valued alphabet approach is presented. The combinational circuit was tested using multi-valued alphabet and the test vectors are analyzed.

Keywords: path delay faults, combinational circuits, multi-valued alphabet, 16-valued alphabet, path delay testing.

Введение. В практике проектирования ЭВМ накоплен огромный опыт по синтезу различных схем. Такие устройства как дешифраторы, шифраторы, схемы сравнения, комбинационные сумматоры, коммутаторы и др. являются комбинационными схемами, применение которых очень развито в современном проектировании цифровых устройств [1]. Правильное функционирование цифрового устройства возможно только в том случае, если времена распространения сигналов вдоль путей логической схемы лежат в определенных пределах. Когда время распространения сигнала выходит за эти пределы, говорят, что имеет место неисправность типа задержки сигнала. В подавляющем большинстве эти неисправности приводят к увеличению времени распространения сигналов [2].

Задержка пути. Рассмотрим исправную схему. В разные моменты времени t1, t2 на неё поступают 2 набора входных значений с определённым промежутком времени. При этом на выходе схемы появляются соответствующие значения 0, 1. Если через промежуток времени, значение схемы в момент t2 не поменяется с 0 на 1, то имеет место неисправность типа задержка путей [3].

Многозначный алфавит. В двоичном алфавите хорошо моделируется статическое поведение логических схем для установившихся значений сигналов, но при этом не учитываются переходные процессы, возникающие при смене значений входных сигналов, и появляется потребность рассматривать отдельно исправную и неисправную схемы. В силу этого получили распространение алфавиты большей значности. В основе многозначных алфавитов, используемых в логическом моделировании и генерации тестов, лежит классический двоичный алфавит $\{0,1\}$, образующий вместе с базисными логическими функциями булеву алгебру B_2 . Существует два способа получения новой многозначной логики путем расширения некоторой исходной логики (A,F) (где $A=\{a1,a2,...,ak\}$ – произвольный k-значный алфавит, F=(f1,f2,...,fm) – множество k-значных функций п переменных) до более мощной по значности логики $(\widetilde{A},\widetilde{F})$. При первом способе новый алфавит \widetilde{A} получается как подмножество некоторого декартового произведения исходного алфавита $A:\widetilde{A}\subseteq A\times A\times...\times A$. Второй способ заключается в том, что новый алфавит \widetilde{A} является некоторым множеством подмножеств элементов исходного алфавита: $\widetilde{A}\subseteq 2^A$. Произвольный элемент \widetilde{a}_i алфавита \widetilde{A} образуется как неупорядоченное подмножество элементов алфавита $A:\widetilde{a}_i=a_{i1}\cup a_{i2}\cup...\cup a_{il}$, где $a_{ij}\in A$ [4].

Тестирование. В контексте тестирования неисправностей задержек путей, нам потребуется 5 значений: для констант 0 и 1, для переходов из 0 в 1 и из 1 в 0, а также неопределённое значение. Для этого есть рекомендация использования подмножества D_5 16-значного алфавита B_{16} [5]. В данном подмножестве будут использоваться значения $0=\{00\}$ — сохранение значений входов 0, $1=\{11\}$ — сохранение значений входов 1, $F0=\{00\cup 10\}$ — смена значений входов из 1 в 0, т. е. задний фронт, $F1\{11\cup 01\}$ — смена значений входов из 0 в 1, т. е. передний фронт и $u=\{00\cup 01\cup 10\cup 11\}$ — неопределённое значение. При анализе задержек

распространения сигналов на паре $\langle X_1, X_2 \rangle$ переменных внешних входов, изменяющихся $0 \rightarrow 1$ (передний фронт) присвоим значение F1. Аналогично переменным, с изменением $1 \rightarrow 0$ (задний фронт) припишем F0. Переменные входов, сохраняющие значения на этой паре наборов, получают значения 0 и 1 соответственно. Далее тестируем схему с этими значениями. Результат моделирования в алфавите D_5 приведен на рис. 1. Очевидно, линии схемы, получившие значения F0 и F1, являются кандидатами на включение их в пути, проверяемые данной парой наборов на неисправности типа задержка сигнала. Чтобы точно определить проверяемые пути, необходимо найти пути в схеме, начинающиеся на внешних входах и заканчивающиеся на внешних выходах, все линии которых имеют значения F0 или F1 и удовлетворяющие указанным выше условиям.

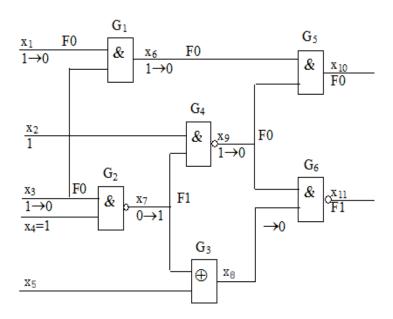


Рис. 1. Схема тестируемая алфавитом D₅

Для приведённой выше схемы, устойчивым тестом является набор $\langle X_1, X_2 \rangle = 11110,\,01010$ для пути P_1 (x_3, x_7, x_9, x_{10}), т. к. пути P_2 (x_1, x_6, x_{10}) и P_3 (x_3, x_6, x_{10}) не влияют на тест для P_1 . Этот же набор является неустойчивым для P4 (x_3, x_7, x_9, x_{11}) т. к. требуется установление значение сигнала на x_8 в 1 до прибытия на G6 сигнала рассматриваемого пути P4.

Заключение. Таким образом, тестирование задержек на путях с помощью многозначного алфавита является эффективным т. к. из-за свойств многозначной логики, сразу учитываются сигналы до и после установления в схеме и получаются тесты проверяющие данные неисправности. Следует провести анализ эффективности данного метода на более сложных схемах и возможно выявить условия успешного получения теста для задержек на путях в зависимости от входов элементов.

Список литературы

- 1. Матросова А.Ю. Классификация задержек путей // ТГУ 2009.
- 2. Скобцов Ю.А., Скобцов В.Ю., Нассер К.М. Построение тестов для перекрёстных неисправностей типа задержка // ДонНТУ -2011, № 14.
- 3. Patel J.H. A tutorial on delay fault testing // Department of Electrical and Computer Engineering University of Illinois. 2005.
- 4. Селиванов П.Е., Безрукова Л.М. Тестирование схем с помощью многозначных алфавитов // $HИT\Pi Y. 2013$.
- 5. Скобцов Ю.А., Скобцов В.Ю. Логическое моделирование и тестировании цифровых устройств. Донецк:ИПММ НАНУ, ДонНТУ, 2005.