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ON CHOICE OF FUNCTIONAL FOR A VARIATIONAL PROBLEM OF GAS DYNAMICS
V.M. Galkin
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Numerical solution of variational problem on construction of supersonic nozzle with uniform output flow is considered. The way of cho-
ice of minimizing functional is proposed. Comparison with the results obtained by another method is carried out.

1. Introduction

It is known that if numerical (programmed) solution
of some problem is possible, this solution could be per-
formed by not unique method. In this sense direct nu-
merical methods of solving variational problems are no
exception, when solution is obtained as a result of mini-
mization of a definite functional. In this case for the
class of variational problems including gas-dynamic
problems some numerical realizations can result in the
fact that definition domain is a holey set.

As a typical example let us consider the problem on
numerical construction of supersonic nozzle with uni-
form output flow solved by direct method. It should be
noted that the problem on nozzle of maximum draft is
close to it [1]. Let flow field be calculated in some noz-
zle, the profile of which is defined by varied variables,
but the functional characterising flow nonuniformity at
nozzle output and having minimum value when the flow
is uniform is calculated by the found field.

The main two approaches can be proposed as a base
for numerical solution of the given problem. The former
uses the fact that the flow keeps to be supersonic and it
is possible to apply cruise schemes which are simple in
realization and quick in calculation; the second appro-
ach supposes existence of subsonic flows and, hence,
requires application of more complicated and slower
numerical methods. Let the method of characteristics
serve as a base of the first numerical solution [2]. It is
evidently, then, that if in some contour supersonic flow
would not be realized completely, and it would result in
emergency stop. The consequence of it would be holey
definition domain, as the functional using parameters of
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flow at nozzle output cannot be calculated. The second
approach taking into account appearance of subsonic
flow and using, foe example, pseudoviscosity method
and Godunov’s scheme [3] has no such disadvantage,
however, intellectual and time consumption increases
by the order.

In the work [4] along with method of characteristics
permitting to get the solution quickly, the functional
which particularly uses magnitudes of flow parameters
found at each characteristic C* is proposed. It makes
possible to proceed with the functional onto simply
connected domain.

In the given article, which is development of the
work [4], the functional is proposed to calculate by a
simpler method. To estimate the accuracy of the results
obtained the solution obtained by the method [2] was
used.

2. The problem

It is given steady nonswirling isoentropic and isoen-
ergetic flow of ideal perfect gas in axial-symmetric noz-
zle, fig. 1. Characteristic equations and compatibility
conditions have the view:

dy
—=tg(0ta),
o g( )

cos’(a)
T (y+1)/2=cos’*(a)

where y — adiabatic exponent, further y=1,4; x and y —
longitudinal and lateral coordinates referred to nozzle
radius of minimum section; a=arcsin (1/M) — Mach’s

+ sin(ct ) sin(0)

+ dx=0, (1)
ycos(0ta)
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angle, M — Mach’s number; 0 — inclination of velocity
vector (current line) to x axes; sign +(-) corresponds to
characteristic of C'(C); it is supposed that in the input
section x,=0. On the wall the non-leaking condition is
realized: tg(0)=f(x), where f{x) — function describing
nozzle contour, the prime means derivative with respect
to x. In the input section x, flow is homogeneous: 6,=0,
M, =1, where index «in» corresponds to input of nozzle.
Further index «0» corresponds to output of nozzle.

Calculating flow parameters at the angular point «a»
Prandtl-Mayer formula is used, following from (1):

02 'H//(az) :01 +V/(a1)’

;—jarctg[ {;—j tg(a)} 2)

where lower indexes 1 and 2 correspond to the parame-
ters before and after turn at the angular point; 6,=0,
alzain'

It is necessary to find nozzle contour (fig. 1), at the
output of which in the section x=x, the flow must have
homogeneous across the nozzle parameters =0 and
Mach’s number M,>1. The pressure at the output is
considered to be more than the pressure of the environ-
ment.

v(a)=—-a+

;] m b
Y
a
1
X
e o k n d c
Fig. 1. Scheme of nozzle. oa = minimum section,; ab — nozzle

with angular point; ad — characteristic of C, belonging
to beam of rarefaction wave; ae — initial characteristic of
kI = characteristic of ; nm — characteristic of ; cb — final
characteristic of C*

3. Test problem

At the assigned adiabatic exponent let us consider
one-parameter, depending on M, family of nozzles with
angular point and homogeneous characteristic at the
output. It is known [1] that these nozzles have maxi-
mum draft and are shortest and providing zero losses at
the distance in the output section. As at the output the
flow is homogeneous and parallel, the indicated nozzles
will satisfy the conditions stated above.

Application of the method [2] at the assigned M,>1
and assigned adiabatic exponent permits to find the on-
ly nozzle belonging to the family stated and satisfying

the problem conditions. Nozzle contour obtained in
this way is considered to be a reference and it will be
compared with direct method, but the coordinates of
the initial point «a» and the stated final point «b» will be
given for direct method.

4. Direct method

The coordinates of the points «a», «b» and tangent
of inclination angle at point «b» are given:

fx)=y, f(x)=y, [(x)=y,
x,=0, y =1 y =0 (3)

The last equality follows from the condition 6=0 at
the nozzle output.

For approximation of sought contour the power po-
lynomials are used as basic functions:
N+3

f(x)= Zc,tf*‘, t=2x-x,-x,)/(x, - x,),

te[-L1], xe[x,,x,]. 4)

As the conditions (3) should be met, the coefficients
Cwil, Cys» Cyiy and nozzle profile fix) are expressed
through lineally dependent coefficients c,,...,cy. It is
required to find nozzle profile satisfying the geometrical
conditions (3) and problem definition.

Direct calculation. In the context of the direct
method a unit calculation of flow field is accepted as a
direct calculation which is finished by functional calcu-
lation. The choice of the functional will be discussed be-
low. In the direct calculation set of equations (1) is sol-
ved by the scheme shown in fig. 2, where the points with
known parameters are denoted by figures «1» and «2»,
from which the characteristics C* and C-follow. The po-
int of their meeting is denoted by figure «3». Writing
down the equations (1) in the difference form, we obtain
the set of equations with respect to unknown parameters
o, 0¢, x{, y{ at point «3»:

V=» _
x3j_x2 —tg(923—a23),
yéi_yl _
x:{_x] _tg(913+a13)’
2
, cos’ a .
6; -6 + 13 ol —o)+
. (;/+1)/2—cosza]3( o)
sina,, sinf,, (x/—x)=0
3 1 >
Vi3 COS(GU +ag;)
2
- cos’a -
6/ -0, - 2 ol —a,)—
P (y+1)/2—0052a23( o)
sina,, sin O -
25000 (! ) =0,

Va3 €08(0; — )

here j=1,2, ... — iteration number. Denote p=a,0,x,y,
then p,=(p+p{™)/2, py=(p,+p{")/2. The system obtai-
ned was solved by iteration up to meeting the condition
max|pi—p{'|<10%. At the initial iteration was suggested
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pi=(p,+p,)/2. As on the axis 6=0, y=0, but on the wall
O=arctg(f(x)) and y=f(x), then in the given set of equa-
tions evident simplifications were made.

2
3
1
Fig. 2. Calculation scheme: 13 — line segment of characteristic

C',; 23 — line segment of characteristic C

Thus, from axis to wall, by known characteristic the
following characteristic is calculated, where indexes i
and i+1 are the order numbers of calculated characteri-
stics. Calculation was made until the next characteristic
(' came to the point «b». As initial conditions 8,=0 and
M,=1,001 were used at the initial characteristic ae.
Such initial conditions are often enough applied instead
of flat sound line [5]. Besides, it should be noted that for
calculation of integrals trapezoid formula was used.

Functional choice. In [4] the functional which was
calculated along the characteristic was used (fig. 1):

J = /je%ﬂ. %)

If in calculating characteristic C;,, avost occurred,
the formula (5) was replaced by the expression:
1 b
J =05, = x)+,|[0%dl + [(x)dx,

x|, fro<0
(p(x)_ )
0, f1(x)=0

where the first integral was calculated along the latter cal-
culated characteristic C, but the second one summed up
the square of nozzle contour section with negative slopes.
If avost occurred when calculating characteristic C;, then
x~=0 and 6=0 along the initial characteristic C;". As a res-
ult of it functional (6) has the view:

(6)

J=x,+ j o(x)dx. (7)

As it is seen, the way of functional calculation (5—7),
suggested in [4], is complicated enough. And, besides, re-
placing formula (5) by formula (6) results in the fact that
functional can be non-differentiable, being continuous.

In the given work another approach is suggested.
Consider two functionals

J = /%j@zdl,
¢

7, J; [Capfaya, L=]a. ®

that are calculated along arbitrary characteristic C;". The
choice of functionals (8) is conditioned by the following
reasons.
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Let nozzle with known M, satisfy the condition of
problem. Then, as it is seen in fig. 3, the first functional
from (8) has the two minimums J,=0. To the first mini-
mum along characteristic ae corresponds 6=0 and
oy, =arcsin(1/M,,). To the second minimum along cha-
racteristic cb corresponds 6=0 and o=arcsin(1/M,). In
this case, as it follows from the equations (1), only the se-
cond minimum is a necessary and sufficient condition to
solve the problem. Therefore, it is obvious that use of the
first functional does not provide uniqueness of solution.

O T T T
1 30 60 90
Fig. 3. Values of functionals along characteristics C*, i = cha-
racteristic number

The second functional from (8), in contrast to the
first one, has single minimum J,=0 along characteristic
cb (fig. 3), to which a=q, corresponds. However this
minimum is necessary, but not sufficient condition of
problem solution, since in this case 6=0 can be. Com-
bination J, and J, gives the following functional:

J3:\/lllc'[[((a_ao)/am)z"'ez]d[' ©)

which has single minimum J;=0 along characteristic cbh
(fig. 3). Since this minimum is necessary anf sufficient
condition of problem solution and 6=0 and a=q, cor-
respond to it, further functional (9) will be used.

Calculating the functional (9) let us use technique,
suggested in [4], and if calculating characteristic avost
occurs, in this case the functional (9) is calculated along
the characteristic calculated before.

If nozzle has negative slope f'(x,)<0 in point «a»,
avost occurs when calculating characteristic and fun-
ctional (9) is calculated along the initial characteristic
ae. Since in calculation of flow parameters at angular
point «a» Prandtl-Mayer’s formula is used (2), the one
can use this formula to calculate a, at 6,<0. In this case
the obtained values of , do not have physical meaning,
at subsonic flow corresponds to it. However due to the
continuity (fig. 4) they permit to prolong the functional
(9) onto simply connected domain in case of negative
slope of nozzle f(x,)<0 and to provide continuity and
differentiability for the functional (9). As the calcula-
tions show, it is enough to take only two points «a» and
«e» when calculating trapezium of functional (9) by the
formula at the initial characteristic ae.

As at the nozzle output boundary conditions do not
change, but flow parameters are defined only by nozzle
profile (4), the value of the functional (9) depends on



Technical sciences

this profile implicitly. Thus, problem of finding nozzle
profile f{x), ocTaBsIOLIEr0 3KCTPeMYM (DYHKIIMOHATTY
(9), cBOAMTCSA K TIOMCKY TOYKHU (Cy,...,Cy), at Which fun-
ction of many variables J;=J;(c,,...,cy) has extremum.
2,312

>

1,8 1

1,3 1

>

0,8 . —
-0,1 0 0,1

Fig. 4. Dependence c,=0,(6,)

To find minimum of this function quasi-Newtonian
Broiden’s method is used from [6].

5. Numerical results

The number N varied variables ¢; changed from I to
10, the initial value ¢=0. Along characteristic ae 50 po-
ints are given. Coordinates of points «a» and «b» are
(0; 1) and (3,576; 1,299). To these values corresponds
the obtained from [2] reference nozzle with angular po-
int and Mach’s number at the output M,=2.

Comparison of solution for both functionals with re-
ference nozzle showed that at N=10 ordinates of nozzles
differed in the fourth sign after point, but maximum re-
lative error along the ordinate amounted 0,02 %.

In fig. 5 the results of minimization are presented in
the form of final values of functional for different num-
ber N, the table demonstrates the influence of coeffici-
ent number and functional used both on the number of
direct calculations and the number of avosts. It is seen
from the results presented that the suggested functional
(9), despite its simplicity, is as good as the functional
(5—7) suggested in [4] for its efficiency.
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9 385/8 320/8
10 44477 492/9
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presence of avosts has extension on simply connected
domain and keeps differentiability, being as good as the
earlier considered functional in the work [4]. Compari-
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