Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 5. Радиационные и пучково-плазменные технологии в науке, технике и медицине

На рис. 1 приведено полученное сечение реакции 186 W(d,2n) 186 Re, которые неплохо согласуются с данными других авторов [3]. Выход 186 Re для $E_d=12,5$ МэВ и толстой мишени из природного металлического вольфрама, оказался равен – (2.3 ± 0.1) МБк/мкАч. Для мишени из обогащенного 186 W выход равен (8.2 ± 0.3) МБк/мкАч.

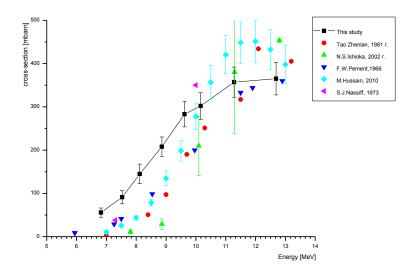


Рисунок 1. Сечение реакции 186 W(d,2n) 186 Re

Полученные данные подтверждают возможность наработки до 4-5 ГБк 186 Re за 10-12 часов облучения мишени из обогащенного 186 W на низкоэнергетическом циклотроне типа P-7M для получения терапевтических радиофармацевтических препаратов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Изотопы: свойство, получение, применение. В.2 т. Т. 2./ Под ред. В.Ю. Баранова. М.: ФИЗМАТЛИТ, 2005. 728 с.
- 2. Alekseev I.E., Lazarev V.V. Cyclotron production and radiochemical isolation of the therapeutical radionuclide ¹⁸⁶Re, Radiochemistry. v.48 (2006) .- p. 446.
- 3. Рекомендуемые сечения 186 W(d,2n) 186 Re реакции [Электронный ресурс]. Режим доступа: https://www-nds.iaea.org/radionuclides/w86d6re0.html

ОСОБЕННОСТИ ПОЛУЧЕНИЯ ¹¹¹IN ДЛЯ ЯДЕРНОЙ МЕДИЦИНЫ

В.М. Головков, А.А. Гарапацкий, А.М. Большаков

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: golovkov@tpu.ru

Радиофармацевтические препараты на основе радионуклида ¹¹¹In относят к числу наиболее широко используемых в ядерной медицине [1]. ¹¹¹In применяют для мечения клеточных компонентов крови, моноклональных антител, обнаружения патологий миокарда, локализации абсцессов циститов почек, радиоимунноглобулиновой терапии, визуализации очагов воспаления, опухолей в онкологии и в других областях [2-3]. Радионуклид ¹¹¹In представляет интерес также и для радионуклидной терапии онкологических заболеваний, поскольку он испускает Оже-электроны, имеющие высокую линейную передачу энергии (ЛПЭ), сопоставимую с ЛПЭ α-частиц.

Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 5. Радиационные и пучково-плазменные технологии в науке, технике и медицине

В данной работе рассмотрены особенности получения ¹¹¹In с использованием классического циклотрона Томского политехнического университета типа Р7М, с целью обеспечения медицинских учреждений Восточной части России РФП на его основе.

С учетом, того что энергия пучка протонов в циклотроне равна 11 МэВ для производства 111 In была выбрана реакция 111 Cd(p, n) 111 In. Приемлемая наработка активности 111 In может быть получена только на обогащенном по изотопу 111 Cd (95,92 \pm 0,06)% металлическом кадмии.

Облучение мишени проводили в ускорительной камере, используя внутреннюю охлаждаемую мишень. В качестве мишени использовали медную пластину, покрытую 10 мкм слоем золота в качестве подложки, на которую наносили металлический кадмий. Внутренняя мишень крепилась на отдельном штоке источника ионов. Ток пучка протонов в камере, по крайней мере, в 2 раза больше, чем в выведенном пучке и достигает 60-80 мкА.

Для уменьшения тепловой нагрузки мишень ориентировали под углом 6° к пучку. Это позволило увеличить поверхность мишени и уменьшить физическую толщину мишенного материала без изменения пробега протонов в нём.

После облучения кадмий растворяли в 6N HBr, ¹¹¹In экстрагировали в диизопропиловый эфир, затем экстрагировали в 8М HCl, высушивали до сухого осадка. Осадок содержащий ¹¹¹In, растворяли в 0.05М HCl и получали готовый препарат, который по качественным показателям, соответствует требованиям к препарату «Индия хлорид, [¹¹¹In]», субстанция-раствор для приготовления радиофармацевтических препаратов

СПИСОК ЛИТЕРАТУРЫ

- 1. Lahiri S., Maiti M., Ghosh K. Production and separation of 111In: an important radionuclide in life sciences: a mini review // J. Radioanal. Nucl. Chem. -2013.-V.297.-P.309-318.
- 2. Jalilian A.R., Garousi J., Akhlaghi M., Rowshanfarzad P. Development ¹¹¹In labeled insulin for receptor imaging/therapy // J. Radioanal Nucl Chem. 2009. V.279. P. 791–400.
- 3. Tolmachev V., Feldwisch J., Lindborg M., A influence of an aliphatic linker between DOTA and synthetic ZHER2:342 affibody molecule on targeting properties of the 111 In-labeled conjugate // Nucl Med Biol. $-2011.-V.38.-N_{2}11.-P.697-706.$

РАДИАЦИОННО-СТИМУЛИРОВАННЫЙ ПЕРЕНОС ВОДОРОДА В МЕТАЛЛАХ

А.С. Долгов, Ю.И. Тюрин, Н.Н. Никитенков

Национальный исследовательский Томский политехнический университет,

Россия, Томская область, г. Томск, пр. Ленина, 30, 634034

E-mail: ellsworth@tpu.ru

Поведение водорода в металлах является актуальной научно-технической проблемой для широкого круга задач фундаментального и прикладного характера. Интерес к вопросам водородопроницаемости и накопления водорода постоянно растет в связи с необходимостью выбора новых конструкционных материалов для ядерной, термоядерной и водородной энергетики и решения широкого спектра материаловедческих задач [1-6]. Установлено, что посредством радиационного облучения, управляя концентрацией водорода в объеме твердых тел можно создавать неравновесные термодинамические системы, синтез которых традиционными методами невозможен [7–9].

В работе рассмотрены процессы диффузии и выхода водорода (дейтерия) из металлов в атомарном, молекулярном и ионизированном состояниях, при воздействии электронного пучка и рентгеновского излучения в допороговой области энергий. Изучена зависимость интенсивности выхода изотопов водорода от плотности