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ABSTRACT   
Ab-initio study on modification of commerce terahertz spectrometer with time resolution Z-3 (Zomega, USA) by 
substitution of ZnTe & GaP detectors and LT-GaAs generator for homemade of pure and S-doped GaSe is carried out. It 
was established that in spite of not optimized parameters pure and doped GaSe:S(0.3 mass%) crystal are comparable, 
relatively, in generation efficiency and detection sensitivity to commerce units due to lower nonlinear optical loss and 
much higher damage threshold. The advantages are in force from pump fluences of below 5 mJ/cm2 for pure GaSe. The 
closer S-doping to optimal concentration, the lover fluences resulting in the advantages. Pure and S-doped GaSe 
demonstrate higher reliability and larger dynamic range of operation. Recorded absorption spectra well match known 
spectra.  
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1. INTRODUCTION 
The last three decades have witnessed an unprecedented advance in the terahertz (THz) science and technology. It 
includes advance in design of uncooled sensitive detectors and effective generators of THz emissions. Traditionally used, 
huge and expensive terahertz instruments have evolved into commercially available top-table systems. On current time, 
terahertz time domain spectrometers (THz-TDS) are in wide use in applied spectroscopy in lab conditions. Anyway, 
further improvement of their key parts to extend operation range and improve reliability until possibility of out-of-door 
use are still desirable, as well as decrease of price.   

Isotropic semiconductor ZnTe is amongst the most popular material for free space (also referred to as electrooptical) 
detectors and optical rectifiers (also referred to as THz generators). It is due to a large electrooptical coefficient that is 
linearly related with the second order nonlinear susceptibility coefficient d14=90 pm/V (at 10.6 µm) and good mechanical 
properties. For efficient operation as a THz rectifier, ZnTe should be pumped by 760-840 nm fs lasers that is lucky well 
in coincidence with the operation range 680-1080 nm of available highly efficient fs Ti:Sapphire laser. However, the 
coherence length of ZnTe limits its suitable thickness and finally rectification efficiency. Achieved rectification 
efficiency is additionally limited by the large, 4 cm/GW, two-photon absorption coefficient at near IR wavelengths and 
large, >40 см-1, linear absorption coefficient at frequencies over 3.5 THz. In spite of the almost two times lower 
electroopitical/nonlinear coefficient, isotropic semiconductor GaP demonstrates higher rectification efficiency into high 
frequency range over 3.5 THz to that of ZnTe due to lower optical losses. Potentials of other cubic semiconductors, such 
as GaAs, LT-GaAs, InP, InAs, etc. as THz detectors and generators are close to the above-mentioned crystals and add 
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each other in different characteristics only in some details. Anisotropic organic DAST crystal is characterized by 
principally larger electrooptical and nonlinear coefficients, as well as by much lower absorption coefficient in 
comparison with those for semiconductor crystals. Its large anisotropy allows phase matched, i.e. much more efficient, 
rectification into THz range that is also referred to as down-conversion. Unfortunately, DAST is hydroscopic and 
possesses a low damage threshold. Besides, it is hard to grow as centimeter size samples. So such, sub-micrometer thick 
films of this material are dominantly used as optical rectifiers of low intensity beams1,2.   

The last two decades, birefringent GaSe crystal was amongst the most used anisotropic crystals for not phase matched 
(optical rectification) and phase matched (down-conversion) into THz range of near IR emission in lab conditions1. It is 
due to extra ordinary physical properties: the extreme wide transparency range 0.62–20 µm continue from 50-60 µm 
further into the THz range, low dispersion, large electrooptical coefficient r41=14.4 pm/V and second order susceptibility 
coefficient d22=24.3 pm/V in the THz range3. The giant birefringence B=0.35 in the mid-IR4 and about 0.79 in the THz 
range5 that allows phase-matched down-conversion of long and ultrashort pulses almost all over the entire transparency 
range 3. It possesses low nonlinear absorption coefficient. GaSe is cheap in synthesis and can be manufactured as 
centimeter size samples.6 Unfortunately, poor mechanical properties (measured hardness is almost “0” in Mohs scale) 
and relatively low optical quality (absorption coefficient ≥ 0.1-0.2 cm-1 at main transparency window and over 0.5 cm-1 
at frequencies over 1 THz) caused by the layered structure and technologically uncontrolled point and micro defects have 
so far kept back commerce applications.  

In order to fully exploit the potential of GaSe and to expand its applications, it is necessary to overcome these 
limitations. Fortunately, GaSe is an excellent matrix for doping with different elements. Appropriate doping by various 
isovalent elements that form isostructural compounds, e.g. sulphur (S), tellurium (Te), indium (In), etc., is an effective 
way to obtain improvements of GaSe physical properties7,8. The optimal Te-doping of 0.38 mass. % noticeably decreases 
the number of point defects and stacking faults and increases damage threshold for from 15 to 20% that is resulting in up 
to 2 times improved phase matched frequency conversion efficiency within the mid-IR. Rectification efficiency of pure 
and Te-doped GaSe into the THz range evidently prevails that in ZnTe at pump fluence of  > 4.5 mJ/cm2 due to higher 
damage threshold caused by lower nonlinear absorption coefficient9,10,11. The optimal S-doping is leading to the most 
impressive results in mid-IR efficiency (up to 3 times at fixed pulse intensity; 50% increased hardness)7,12. The 
efficiency of phase-matched down-conversion of long (ns) pulses into the THz range is also improving for 3 times13-16. 
Recently, it was established that optimal S-doping also increases the damage threshold for from 4 to 5 times17,18. At the 
reasonably high pump fluence, the phase-matched frequency conversion efficiency within the mid-IR raises up to 15 
times19-21. Impressive results were demonstrated on frequency conversion in S-doped GaSe of ultrashort (ps and fs) 
pulses into mid-IR13,22. However, very limited data are available yet on efficiency of not phase matched and phase 
matched optical rectification of fs pulses in S-doped GaSe crystals into the THz range23. No attempts were made on 
application of pure and doped GaSe crystals in commerce devises as THz detector or generator.  

In this work, we tried our best for the first time to our knowledge to use S-doped GaSe crystals as generators and EO 
detectors in commerce THz-TDS Z-3 (Zomega, USA). Exfoliated samples from the as-grown boulles were used. No 
additional treatment or attempts on optimization of crystal length or modification of the spectrometer optical set up were 
made.  

 

2. CRYSTAL GROWTH  
For this study, pure and doped GaSe crystals were obtained by modified two-zone24 syntheses method. In accordance 
with this method, Ga is placed in the “hot” zone of the ampoule, while the other part with Se is slowly heated in the 
“cold” zone according to the progress of synthesis reaction. The starting materials for the synthesis were Ga 99.9997, Se 
99,99 and S 99.95, which were additionally purified by remelting in a continuously evacuated ampoule. We preferred to 
use single zone furnace with gradual moving of the ampoule inside25. This technique seems to be very reliable, because 
one may estimate the vapor pressure inside the ampoule visually by its color. To improve optical quality of the 
synthesized compound synthesis is conducting by using quartz ampoules charged with a large amount, up to 65% in 
volume, to decrease rest gases quantity and as a result to improve the material quality. Growth ampoules covered with 
pyrolytic carbon are used to exclude interaction with the quartz wall to prevent deformation of grown boulles. Growth 
oven with heat field rotation was used to make melt uniform and crystallization front thinner and finally grown crystals 
of high optical quality. Other details on the growth process used can be find elsewhere25,26. Visual inspection of as-grown 
crystals didn’t show any color differences between initial and final sections of boules. Its high optical quality can be 
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estimated by naked eye, evident in its transparency and homogenity. Eutectic was negligible and layered GaSe structure 
could be seen through it. So, end section of the boule also could be easy cleaved that confirm its top quality. Samples 
made were made simple exfoliation by using blade. Any additional processing was not exploited.    

 

3. CRYSTAL CHARACTERIZATION 
The physical properties of the S-doped GaSe were characterized at room temperature. Scanning electron microscopy 
(SEM) with a SEM Quanta 200 3D (FEI, Netherlands) microscope was used in the study of surface morphology, and Ga 
and Se contents after providing with EDAX ECON VI micro analyzer. An X-ray diffractometer Shimadzu XRD 6000 
(Japan), and a transmission electron microscope (TEM) CM12 (Philips, Netherlands) for measurement used in the SAED 
method were also implode in analyzing structure. UV-visible-near-IR transmission spectra were recorded by a Cary 100 
Scan (Varian Inc.) spectrophotometer over the spectral range 190-900 nm with a spectral resolution Δλ 0.2-4 nm nm. 
The measurements of linear optical properties at 0.2-4 THz were performed at room temperature using a THz-TDS 
described elsewhere27.  

Only Ga, Se and S peaks were obsearved in the EDAX spectra. The diffraction patterns clearly confirm the high quality 
of the crystalline structure. We found that in unpolarised light the absorption coefficient α for GaSe crystals does not 
exceed 0.05 cm-1 within their maximal transparency range that is 2-3 times lower to that for GaSe crystals grown by 
conventional vertical Bridgman technology. Optical quality of S-doped crystals is found depending on S-content. At 
identified optimal doping concentration of 2-3 mass % of S they demonstrated once more again decrease in the 
absorption coefficient for 2-3 times at both mid-IR and THz frequencies. Short-wave edge of doped crystals linear shifts 
toward short waves proportional to the S-content down to 0.54 μm at 11 mass % S that significantly decrease nonlinear 
two-photon absorption coefficient.  Besides, optical quality of exfoliated samples became evidently of higher quality due 
to decreased cleavage. Improved linear and nonlinear optical properties of S-doped GaSe crystals lead to 4-5 times larger 
damage threshold that allows increasing frequency conversion efficiency by increasing pump intensity.  

 

4. EXPERIMENTAL 
The terahertz time-domain spectrometer Z-3 (Zomega, USA) used a standard configuration incorporating a femtosecond 
laser, four off-axis parabolic mirrors, a biased LT-GaAs emitter, and electro-optic detector with changeable ZnTe and 
GaP crystals, and balanced Si photodiodes. The frequency resolution was 5-200 GHz. Pump laser system based on 
Ti:Sapphire laser with external resonator and has next parameters: 950 nm, 50 fs, 150 mW. Master Ti:Sapphire laser 
system was also of classic type. It should be noted that parameters of Z-3 THz-TDS are not extra for spectroscopic 
applications but anyway, it is very useful for our study. Older design THz-TDS Z-3 makes simple substitution of its key 
units, such as emitter or detector, by homemade ones.  External view at the Z-3 spectrometer is shown in Fig.1. 

 

      
a                                                                                               b   
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coefficient). It and improved optical quality of grown crystals is leading to higher damage threshold17,18. So, intensity of 
the reference beam and finally sensitivity can be further improved for GaSe and S-doped GaSe detectors by increasing 
pump intensity.  

  
a  

  
              b 

 
Fig.2. An example of absorption spectrum of (a) a drug tablet as-given in the manual and (b) absorption spectrum of GaSe with 
absorption peak of the rigid phonon mode E′(2) at 0.59 THz recorded by the THz-TDS Z-3 in lab conditions.  
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doped GaSe crystals are characterizing by much larger dynamic range as generators, as well as detectors due to a range 
of their physical properties. So such, further careful study of pure and doped GaSe crystal applicability as optical 
rectifies and detectors seems to be reasonable. It is necessary to outline that current study are just ab-initio study in this 
field.    

Some results of ab-initio spectroscopic study of crystals and drugs are shown in the following Fig. 5-7  

 

   
 

Fig. 5. Absorption spectra of GaSe:InSe(1 mass%) in the THz range recorded with spectral resolution 10 GHz.  

 

     
   

Fig. 6. Absorption spectra of GaSe:InSe(1 mass%) in the THz range recorded with spectral resolution 25 GHz.  
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Fig.7. Plots of THz absorption spectra of pure GaSe and GaSe:InSe(1 mass%) crystals with spectral resolution 10 GHz. 

 
In Fig. 5 - 7 it is seen that recorded spectra are of the same quality as exampled in the Z-3 manual (Fig. 2a).  Besides, it is 
seen that absorption peak of the rigid phonon mode in GaSe at 0.59 THz is decreasing with the increasing of the spectral 
resolution and doping with InS (It is in fact four component Ga1-xInxSe1-ySy crystal) in full accordance with known data20

. 
Recorded absorption spectra for aspirin shown in Fig. 8.  In Fig. 8 it is seen that one run (no averaging) THz absorption 
spectrum of aspirin well match absorption spectrum from the data bank. It is the common case in the study carried out. 

 

 
 

Fig.8. Transmission spectra of aspirin as presented in internet data base (red line) and recorded with modified Z-3 THz-TDS.  
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6. CONCLUSION 
Ab-initio study on modification of commerce terahertz spectrometer with time resolution Z-3 (Zomega, USA) by 
substitution of ZnTe & GaP detectors and LT-GaAs generator for homemade of pure and S-doped GaSe is carried out. It 
was established that in spite of not optimized parameters pure and doped GaSe:S (0.3 mass%) crystal are comparable, 
relatively, in generation efficiency and detection sensitivity. It was established that it is due to lower nonlinear optical 
loss and much higher damage threshold. The advantages are in force from pump fluences of below 5 mJ/cm2 for pure 
GaSe. The closer S-doping to optimal concentration, the lover fluences resulting in the advantages. Pure and S-doped 
GaSe demonstrate higher reliability and larger dynamic range of operation. Recorded absorption spectra well match 
known spectra.  
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