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  ABSTRACT 
The influence of the optical inhomogeneities effect of the prism stretcher elements on the spatial, angular and spectral 
parameters of the transmitted radiation and the degree of change in the phase aberrations of the laser beam during its 
propagation in the stretcher are studied. It is shown that the prism material does not allow transmitting of a required 
diameter of 75 mm without linear distortions of the beam. The maximum intensity and beam diameter allowing to 
amplify the picosecond pulses in XeF(C-A) amplifier are determined. 
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INTRODUCTION 
In the last decade the research and developments aimed at creating of the laser systems of terawatt and petawatt power 
level is rapidly developed [1-4]. The great interest in this area of research is due to the fact that the achievement in laser 
pulse of ultra-high power opens an opportunities for research in the rapidly developing fields of modern physics. All 
high power installations work on the solid-state active media which emit in the infrared spectrum region (0.8-1 mµ). 

In the Institute of High Current Electronics SB RAS (Tomsk) on the initiative and support of academician G.A. Mesyats 
the THL-100 hybrid laser system operating in the visible spectrum range (475 nm) was created [5-11]. The accumulated 
experience of the high power gas lasers development was used for it creation [12-14].Visible range gives the new 
opportunities for high power laser beams interaction with matter. Obtaining such a powerful radiation in the visible 
range by the second harmonic generation in high-power infrared laser systems is limited by the technical capabilities of 
non-linear crystals manufacturing. The maximum output power obtained by this method at a 400 nm wavelength is 4 TW 
[15]. In the laser system of THL-100 at the first research stage the power level of 14 TW was reached [9-11] and the 
achievement of 50-100 TW range is planned. 

The laser system of THL-100 consists of a Ti:sapphire start complex, prism stretcher, photochemical XeF(C-A) 
amplifier and  glass compressor. Start complex emits the 50 fs pulses with energy at the second harmonic (475 nm) up to 
20 mJ. Prism stretcher due to the negative dispersion increases the pulse duration from a femtosecond to the 1-3 ps 
range. This chirped pulse is amplified in the active medium of XeF(C-A) amplifier with an aperture of 24 cm.  Active 
medium is created in XeF2/N2 mixture by VUV radiation xenon which is excited by a high-power electron beam. In 
order to achieve the gain saturation of the amplified signal the multipass optical scheme (33 passes) is used. After 
amplification the laser pulse is compressed by the glass compressor to initial duration of 50 fs. Stretching of the 
transform-limited pulse up to picosecond duration is necessary for its more efficiency amplification in the active medium 
of XeF(C-A) amplifier and reducing of the radiation exposure on its optical components. It is very important that the 
input laser beam of XeF(C-A) amplifier has a good uniformity in intensity and spectral compositions. However in case 
the propagation of ultrashort laser pulse in prism stretcher both linear and non-linear distortion of the laser beam in the 
prisms can occur. In addition for full compensation of angular dispersion of the output beam a very accurate alignment 
of the prisms in three dimensions have to be provided. Therefore the very strict requirements are lodged to the prism 
stretcher which are necessary to provide for its efficient operation.  

To determine the optimal operating conditions of the prism stretcher we carried out the experimental and theoretical 
studies of passage through it of the femtosecond radiation pulse at a 475 nm wavelength with varying intensity and 
diameter of the laser beam. Herewith the spatial, angular and spectral parameters of the transmitted radiation were 
recorded. 
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 THE EQUIPMENT AND TECHNIQUES 

In the experiments the radiation from a solid-state start complex was passed through a prism stretcher. The laser beam 
energy was varied in the range of 0.1-1 mJ. The optical stretcher scheme allows providing a negative dispersion of the 
laser beam with a diameter of 10 to 75 mm. The output beam from the stretcher was went out at a slight angle to input 
beam in the vertical direction. To determine the necessary alignment accuracy a computer model of a prism stretcher was 
modeled in Zemax program. It takes into account only the geometric distortion of the beam. Experimental and theoretical 
simulation is performed in two stretcher configurations. In the first case after passing through the prisms the beam is 
back reflected by a mirror at a slight angle (~ 0.5 degrees) to the vertical direction to the incident radiation to take it out 
of the stretcher, Figure 1. 

 
Figure 1. Simulated stretcher scheme. The reverse radiation passes through the stretcher at an angle to the vertical line. 

In the second case the beam was mounted by two mirrors and it was returned strictly parallel to input beam, Figure 2. 
The calculation for a beam diameter of 45 mm at three wavelengths of 465, 475, 485 nm was performed. These 
wavelengths correspond to the central and boundary values of our beam. 

  
 Figure 2. Simulated stretcher scheme with roof-mirror.  

In our experiments it was found that even with a small misalignment of the optical stretcher scheme the full 
compensation of angular dispersion in the output beam is not implemented. In this regard, the calculations were carried 
out to determine the accuracy of the installation angles of the prisms in three dimensions. Control these angles magnitude 
was determined by the beam size in the far field, so that it does not exceed the Airy disk. In these configurations the 
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stretcher provides the maximum possible stretching of the pulse duration. After the passage through the stretcher the 
duration of the chirped pulse becomes 2.6 ps. The distance between the prisms is equal 9.6 m. 

After careful adjustments of the stretcher, allocation of spectrum in the cross section of the beam was experimentally 
measured. To reduce the intensity of the radiation on prisms the laser beam is expanded by the mirror telescope with a 
magnification M = 3. The size of the beam in the prisms was 45 mm. The spectrum  distribution across the beam  
experimentally was measured in the two schemes. The first case is equivalent to a simulated, shown in Figure 1. In the 
second case, the corner reflector was replaced by a flat mirror, so that the beam in stretcher was returned exactly the 
same way as the direct passage. In such scheme a beam-splitter, which fully reflects infrared radiation and transmits 
visible spectral range, was set in front of the spectrometer for measuring the spectrum. To find the dimensions of the 
beam, in which the angular dispersion is fully compensated in the stretcher, the initial beam was limited by diaphragm, 
which was set before KDP. The Avantes spectrometer was used for control over the angular dispersion of the output 
beam registering the spectral composition of the output beam. It was located 30 meters from the beam-splitter. At the 
same time the monitoring beam with a diameter of 15 mm was recorded in three areas - central, left and right each with a 
diameter of 6 mm. The influence of the stretcher on the divergence of the laser emission was experimentally measured 
using the narrow-band diode laser radiation at a wavelength of 488 nm. Beam divergence measured by the next method: 
the beam diameter in the prisms was 50 mm, the beam is directed onto a spherical mirror with a focal length of 11 
meters, in which the focal waist located turret aperture with a diameter from 0.5 to 5 mm, with increments of 0.5 mm. 
Ophir Nova II calorimeter was set up after the diaphragm. 

RESULTS 
Through computer modeling of the prism stretcher were defined limit values of misalignment angles of prism that the 
output beam in the aberration-free focusing lens does not exceed the size of the Airy disk. Figure 3 shows a spot diagram 
of radiation in the far field in the simulation scheme with corner reflector. On the left diagram, the deviation from 
Brewster's angle of the prisms is 0.4 degrees. With this amount of deflection angle of rotation of the prism beam size at 
the focus is less than the Airy disk. However, the wavelengths of 465 and 485 are located on the border of the Airy disk 
vertically 

 .                                      
Figure 3. Spot diagram at alignment deviations (left – Brewster angle, right – vertical angles). 

The right diagram of the figure 3 shows the effect of the deflection angle from the vertical axis of prism in the simulation 
scheme with corner reflector. In this case, the deviation angle is a 5 degree. This is the maximum possible angle of 
prisms deviation from vertical axis. It is seen that the boundary wavelengths of our beam are separated by a short 
distance within the Airy disk. Thus, we can conclude that the alignment in the plane of the stretcher in this scheme is not 
as critical as the setting angle of Brewster prisms. Figure 4 (left) is a spot diagram of the far field radiation in the 
simulation scheme of the stretcher with the reverse passage of radiation at an angle to the vertical axis. In this case, the 
deviation of the prisms from Brewster's angle equals the 0.34 degrees. Position accuracy in this case is slightly higher 
than in the previous case.  
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Figure 4. Spot diagram at alignment deviations (left – Brewster angle, right – vertical angles). 

However, the accuracy setting the prisms from vertical axis is significantly higher and it is 1.2 degrees. In this case, the 
beam dispersion is stretched in a vertical plane, which is shown in Figure 4 (right). 

Figure 5 shows the experimental dependence of the spectral distribution of the beam. From this graph can see that the 
spectrum of the beam is not evenly distributed across the beam. The laser beam before the stretcher has a maximum at 
475 nm and the spectral width of ~ 6 nm at half maximum. After passing through the stretcher in the central part of the 
beam only wavelengths 473-475 nm remain. The spectrum with shorter wavelengths is at the right part of the beam and 
the spectrum with longer wavelengths is at the left part of the beam. A similar situation was observed in the vertical 
plane. Further work with the beam in the laser system THL-100 is not possible, as part of the spectrum, located on the 
periphery of the beam will be lost in the spatial filter and the subsequent optical elements that lead to a narrowing of the 
spectrum up to 2.5 nm. It corresponds to the duration of 130 fs for transform-limited pulse. Based on computer 
simulations it can conclude that this  spectrum distribution of the beam after the stretcher can be observed at non-optimal 
installation angles of the prisms. However, the accuracy of the stretcher alignment was higher than calculated angles in 
the computer model. Most likely the heterogeneity of the prism material leads to the impossibility of full compensation 
of angular dispersion while operating with diameters greater than 45 mm. 

 
Figure 5. Spectrum distribution of the beam after the stretcher. 

To exclude the influence of the prisms tilt angles the modeling experiments were conducted when the beam was directed 
straight back through the stretcher. Wherein further to reduce the influence of glass inhomogeneity the beam diameter at 
the first harmonic was limited to 2 mm. In this case, the diameter of the beam passing through the prism was 10 mm and 
its an energy was 20 μJ. In consequence of the passage of such a scheme the beam is turned in polarization rotator in 90 
degrees, and thus the experimental dependence of the spectrum corresponds to the horizontal plane of the simulated 
stretcher. The distribution of the emission spectrum across the beam in such a stretcher configuration is illustrated in 
Figure 6. In this case, the emission spectrum in the central part of the beam coincides with the initial spectrum width. At 
the periphery of the beam still observed the less spectrum narrowing than in the case shown in Figure 5. 
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Figure 6. Spectrum distribution of the beam after the stretcher. 

Figure 7 shows the energy diagram of the beam in the far field after passing through the stretcher at a wavelength of 488 
nm. This figure shows that 84.6% of the beam energy is located at 2.3 diffraction angles. It can be concluded that the 
divergence of the beam deteriorates in consequence of the poor quality of the prism material also as non-axial output of 
radiation from the telescope. The improvement of divergence in the stretcher can be reached by additional aberrations, 
such as the installation of a plane-parallel plate at some angle inside of the stretcher or installation of prisms not parallel 
to each other. In addition, divergence may be improved by using a spatial filter however it will lead to a narrowing of the 
spectrum. 

 
Figure 7. The divergence of radiation at a wavelength of 488 nm after stretcher passing. 

Thus by computer modeling in program Zemax the alignment prisms stretcher angles was identified at which the output 
beam has no significant distortion. Based on calculated accuracy of alignment the uncompensated angular dispersion in 
the stretcher should be not observed. However even with a low energy eliminating the nonlinear optical effects in 
stretcher cannot avoid uncompensated angular dispersion experimentally. This is due to the heterogeneity of the prism 
material. Full compensation of the stretcher angular dispersion can be achieved by introducing additional aberrations in 
the stretcher, for example, this can be achieved by setting the prisms having non optimal angles. It is easy to implement 
for the narrow-band radiation of a diode laser at a wavelength of 488 nm, however, it impossibly to realize for broadband 
femtosecond laser radiation. As a result of this work it was shown that in the stretcher of femtosecond laser system THL-
100 there are serious problems with laser beams diameter greater than 1 cm. 
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