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Abstract. This paper describes the opportunity of titanium nitride (TiNx) films application as 

protective coating for Zr-2.5Nb alloy from hydrogenation. Dense TiNx films were prepared by 

filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic 

curves of hydrogen sorption at elevated temperature of the sample (T = 673 K) and pressure (P = 2 

atm). Results revealed that TiNx films significantly reduced hydrogen absorption rate of Zr-2.5Nb. 

1.  Introduction 

Zirconium-based alloys such as Zr–1Nb, Zr–2.5Nb are widely used in nuclear industry as cladding 

materials for Russian PWR of VVER type reactors. Zirconium has a good combination of properties such 

as low neutron absorption, stress-corrosion cracking resistance, creep behavior, reduced hydrogen uptake 

and corrosion [1–3]. Hydrogen released during the process of water radiolysis which appeared under the 

influence of radiation during reactor operation cycle. Hydrogen degradation can manifest itself in 

appearance of hydride phases resulting in substantial loss of plasticity, increase in ductile-brittle transition 

and sometimes in decrease in mechanical strength [4-9]. The presence of high temperatures, pressure, 

mechanical loads lead to the mechanical properties degradation [5-10]. 

Most attempts to prevent hydrogen embrittlement of zirconium alloys focused on the surface 

modification and deposition of thin surface layers by ion-plasma deposition, ion implantation, pulsed 

electron or ion beams surface modification [11-13]. TiNx is a promising candidate as a diffusion barrier 

coating. It has high melting temperature, high hardness, excellent exhibited ion-irradiation tolerance and 

high thermal conductivity [14–17]. TiN thin films have found a numerous industrial application because 

high erosion and corrosion resistance which favorably affects the fretting wear of the coating [18]. It was 

previously found that TiNx films deposited by direct current magnetron sputtering (dcMS) significantly 

reduced hydrogen uptake by Zr–1Nb alloy and it is promising films to protect zirconium alloys from 

hydrogen embrittlement [19, 20]. However, the sputtered TiN films usually exhibits a lower density and 

adhesion with substrate compared to arc evaporated films due to its low density and degree of ionized 

sputtered atoms. Additionally, magnetron sputtering always exhibits lower deposition rate due to target 

poisoning with an introduction of reactive gas. Cathodic vacuum arc (CVA) deposition has some 

advantages such as a high ion to neutral ratio of arc evaporation process which resulted in a densification 

of the growing film and a high level of adhesion to the substrate due to increased adatom mobility [21]. 

The formation of macro-particles during arc evaporation leads to a defect and rough surface morphology 

of coating [22, 23]. It was demonstrated that the application of plasma filters and negative pulsed bias to a 

substrate significantly reduced the microdroplets content in coatings [24, 25].  

Hydrogen absorption kinetics by Zr–1Nb alloy with TiNx films deposited by filtered CVA have not 

been discussed. In this paper we described the influence of TiNx deposited by filtered CVA onto Zr–1Nb 

alloy on hydrogen absorption rate and element distribution before and after hydrogen saturation. 

2. Materials and Methods 

Zr–1Nb samples with fixed size of 20×20×0.5 mm were previously polished to the average roughness Ra 

of 0.045 μm using sandpaper and diamond paste. The chamber was evacuated to the base pressure of 

lower than 2.5×10
-3 

Pa. Before deposition samples were subjected to ion bombardment in argon glow 
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discharge at 1500 V for 3 min. The cathodic vacuum arc evaporation system equipped with coaxial 

plasma filter (designed by authors [24]) was used. Ti (99.99 % purity) was used as the cathode material. 

The process parameters are shown in Table 1. 

Table 1. Process parameters for TiNx coatings deposition 

Arc current, A Pulsed bias, V Pulse frequency, kHz Pressure (Ar), Pa Deposition time, min 

75 150 100 0.15 30 

Hydrogenation of the samples was performed by Sievert method (from hydrogen atmosphere) on the 

automated complex Gas Reaction Controller LPB (USA) during 120 min at 673 K temperature. The 

heating rate and hydrogen pressure in the chamber was 6 K/min and 2 atm respectively. The 

hydrogenation temperature was chosen due to the working temperature of zirconium fuel cladding in the 

operation process of nuclear reactors. Hydrogen absorption rate was measured from the absorption curves 

after hydrogen saturation. 

The phase identification and structural investigations were performed by X-ray diffraction with CuKα 

radiation (1.5410 A wavelength) using Shimadzu XRD-7000 (Japan) diffractometer in asymmetric mode 

at 40 kV, 30 mA and θ=3° fixed angle. Study of the elemental composition of samples was performed by 

high-frequency glow discharge optical emission spectroscopy (GD-OES) with GD-Profiler 2 technique 

(Horiba, Japan). Hydrogen concentration was measured according to the principle of melting in inert gas 

at hydrogen analyzer RHEN602 (LECO, USA). 

3. Results and discussion 

Figure 1 shows that the intensity of hydrogen pick-up by Zr–1Nb significantly higher than Zr–1Nb with 

TiNx. Hydrogenation of initial zirconium alloy characterized by a linear region at the beginning of the 

process and gradually reaches saturation to 2500 sec in comparison with Zr–1Nb/TiNx which has not 

reached saturation during hydrogenation. Thus, TiNx film deposited by filtered CVA reduces the intensity 

of hydrogen uptake by Zr–1Nb alloy. The average hydrogen absorption rate was calculated on the linear 

regions and presented in Table 2. Hydrogen absorption rate by Zr–1Nb decreased in ~24 times as a result 

of TiNx coating deposition. 

Table 2. Average hydrogen absorption rate 

Sample Average hydrogen absorption rate, wt.%/sec 

Zr–1Nb 1.4×10
-3

 

Zr–1Nb/TiNx 5.7×10
-5

 

Table 3 shows that after hydrogen saturation the total hydrogen concentration in the volume decreased 

from 22100±300 ppm for Zr–1Nb to 1150±100 ppm for Zr–1Nb with TiNx film. The principle of melting 

in inert gas at hydrogen analyzer allows to measure hydrogen concentration with the accuracy of less than 

1 ppm. However, the concentration of hydrogen is generally distributed unevenly throughout the sample 

volume. Therefore we cut 3 pieces from different sites of the samples to more accurately determine the 

 

Figure 1. Hydrogen pick-up curve 
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total hydrogen concentration. The small amount of hydrogen contained in initial Zr–1Nb and Zr–

1Nb/TiNx samples. 

Table 3. Hydrogen concentration in the samples before and after hydrogen saturation 

Hydrogen concentration Zr–1Nb Zr–1Nb/TiNx 

Before saturation 14±3 ppm 19±5 ppm 

After saturation 22100±300 ppm 1150±100 

Figure 3 shows diffraction patterns of Zr–1Nb with TiNx coating before and after hydrogen saturation. 

In-plane XRD measurements were carried out in an asymmetrical layout. The incidence angle was 3 

degree. The zirconium hydride reflections have been observed after hydrogenation. Analysis of this 

pattern shows that zirconium hydride reflections belong to the δ hydride. The most intensive reflection 

(200) of TiN coatings has been detected in both diffraction patterns. This fact indicates on the presence of 

the texture in the coatings. It could be associated with TiNx coatings deposition parameters. 

 

Figure 3. XRD analysis of Zr–1Nb with TiNx before (below) and after (above) hydrogenation 

 

Figure 4 shows GDOES profiles of Zr, Ti, N, O, H elements before and after hydrogen saturation. The 

results revealed that hydrogen is present in the TiNx film and non-uniformly distributed in the sample 

volume after hydrogen saturation. Furthermore the thin oxide film was observed on the surface of the 

samples before and after hydrogenation. The intensity of hydrogen signal monotonically decreased with 

increasing the analyzing depth (sputtering time) and nearly reaches the minimum behind the TiNx–Zr–

1Nb interface (Fig. 4a). It also can be seen that Ti/N ratio decreased at the film depth. After hydrogen 

saturation the intensity of hydrogen signal increased and reached the maximum in TiNx–Zr–1Nb interface 

than monotonically decreased with increasing the depth (Fig. 4b). It indicates that hydrogen accumulates 

 

Figure 4. GDOES profiles of elements of Zr–1Nb/TiNx before (a) and after (b) hydrogen saturation 
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in the TiNx film towards the interface which is probably associated with the decreasing of nitrogen 

content. Hydrogen penetrates outside the TiNx film through Zr–1Nb alloy due to diffusion process 

induced by the difference of concentration in the interface and the sample volume. 

4. Conclusion 

Titanium nitride films deposited by filtered cathodic vacuum arc significantly reduced hydrogen uptake 

and total amount of hydrogen in the volume of Zr–1Nb alloy. Hydrogen absorption rate decreased in 

more than 20 times. δ-phase zirconium hydride formed during hydrogen saturation of Zr–1Nb with TiNx 

film. Hydrogen predominantly accumulates in the TiNx–Zr–1Nb interface where the nitrogen content is 

low. 
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