
Study of interrelation between electromagnetic radiation and 

rock strength 

L V Yavorovich
1
, A A Bespal’ko

1
, P I Fedotov

1
 and E K Pomishin

1
 

1
 Problem Research Laboratory of Electronics, Dielectrics and Semiconductors, 

Nondestructive Testing Institute, Tomsk Polytechnic University, Lenin Avenue, 30, 

Tomsk, 634050, Russia 

 

E-mail: pif@tpu.ru 

 
Abstract. The paper presents the study of the electromagnetic radiation of real rock samples 

under acoustic impact. The test samples are made of kerns from the iron ore mine with 

different petrophysical features and strength. The study has shown that the electromagnetic 

radiation parameters are related to the sample strength. However, this dependence is not 

observed for samples with magnetite that can be due to individual structural-textural features 

and quartz inclusions. 

1. Introduction 

The basic mechanism of mechanoelectric transformations (MET) in rocks is to be revealed to work out 

a method based on measuring electromagnetic radiation (EMR) to monitor the change in the rock 

stress-stained state (SST) and its strength and to forecast geodynamic events. To obtain MET patterns, 

we used the method of physical modeling in vitro. 

When rocks crack, electrons, positive ions, photons and radio waves are emitted. In the study, we 

consider the EMR in the frequency range up to 1 MHz. 

Stepanov was the first to observe the electric charge on the NaCl crystal surface as a result of 

flowage in the absence of an external electric field in 1933 [1]. He attributed this phenomenon to 

crystal slayers rubbing against internal inhomogeneity and microcrack originating. 

Further investigations on this phenomenon were conducted by Fishbach and Novikov (1955) [2]. 

They studied increase in the electric charge on the NaCl crystal surface under pressure and attributed it 

to charged dislocation. Urusovskaya (1958), Martyshev (1965) and Kornfel’d (1971) continued the 

study [3–5]. A number of investigations were performed for piezo- and nonpiezoelectric, crystalline 

and amorphous, metallic and dielectric materials and rocks under different effects [6–11]. 

After that, interest in EMR was of applied relevance and focused on the earthquake forecast [12–

14], forecast of rock destruction in underground mines [15–17], study of explosion [18–19], 

nondestructive testing of defect structure and strength.  

It should be noted that a significant part of the research into this problem belongs to a research 

group under the guidance of Vorob’ev A.A. (1970), Tomsk Polytechnic University. 

He coined the term “mechanoelectric transformation” related to EMR. Vorob’ev noted that 

transformation of mechanic energy into electromagnetic one depends on the properties of interacting 

systems which possess energy. He pointed out that all types of energy can transform into mechanic 

energy which in the interior of the Earth can transforms into electric energy [20]. Transformation of 
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free charges or charged particles occurs under the influence of an electric field.  Thereby, EMR is 

caused by increase or change in the charge on the dielectric surface. 

Over recent years, great attention has been paid to studying electromagnetic signal (EMS) 

parameters, induced by acoustic impact [21–24] to find out the mechanism of EMR processes. The 

majority of the researchers consider an electric dipole occurring on the opposite sides of the crack to 

be the source of EMS [25–27]. The electric dipole is also formed by double electric layers (DEL) in 

interaction of different materials through pores in materials. The change in the dipole moment causes 

EMS. 

Theoretical underpinning of the EME method for testing dielectrics quality is provided in the 

research by B.B. Lasukov [28]. It shows that stimulating mechanic vibration by a single normed stroke 

causes the bias current that is a function of the dipole moment and of the speed of change in the 

volume density of elementary sources. The quantity of charge, its volume structure and amplitude 

depend on physicochemical properties of the sample inner regions. 

Therefore, the paper aims to study the change in the EMR parameters under acoustic impact for 

rock samples with different physicochemical properties, granules and micro-cracks. Charged particles 

with higher probability concentrate in inhomogeneities, produce an electric field and, as consequence, 

mechanic energy transforms into electromagnetic energy. In addition, the study of EMR emitted from 

the rocks is of practical interest as a key to developing the method of monitoring and forecasting 

geodynamic events in rock massifs. 

2. Test object 

The test objects are rock samples from Tashtagol ore mine 

(Kemerovo region). These are skarn samples with different 

petrographic composition without magnetite and magnetite ore 

samples with different content of magnetite. Cylindrically-shaped 

samples with a diameter of 42±1 mm and a height of 80±2 mm 

were cut out of the core. Before testing, the sides of the samples 

were polished until flatness with the discrepancy no more than 

0.5±0.1
 о

. The angle between the sample sides and its axis was 

90±1
 о
. The image of the samples is shown in Figure 1. 

 

3. Study technique 

Acoustic impact was performed by a little steel ball launched from a spring pistol. It is a dynamic 

method of impact. The block diagram of the dynamic method is shown in Figure 2. 

 

 
Figure 2. Block diagram of the dynamic method of acoustic impact 

 

Figure 1. Samples image:  

left is skarn sample, right is 

ore sample. 
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The ball is launched by pistol (1), passes through tube (2) and strikes a metal grounded plate that is 

connected to the sample by means of mineral oil. The acoustic pulse passes through the sample and is 

recorded by piezoceramic transducer (PCT) (3). A signal from PCT (3) initiates recording by the scope 

Tektronix TDS2024B (4). The EMS generated by the acoustic wave is received by differential electric 

detector (DED) (5) measuring only the electric part of the EMS. DED connected to the scope 

differentiates and amplifies the signal. The signals from the scope are transferred to a PC for the 

analysis. To change the duration and amplitude of the acoustic signal, we used balls with different 

mass of 0.25·10
–3

 and 0.86·10
–3

 kg that corresponds to the acoustic signal front of 10·10
–6 

and 14·10
–6

 

s. 

 

4. Experimental results 

To determine an ultimate strength of the investigated samples, they were subjected to uniaxial 

compression with a press. 

The task for iron ore samples was to estimate the relation of the quantity of the magnetite content in 

the samples to their ultimate strength and the maximum EMS amplitude. Table 1 summarizes the data 

on the magnetite content in the iron ore samples, their ultimate strength and the maximum EMS 

amplitude. 

 

Table 1. Data on the magnetite content in the iron ore samples, their ultimate strength and the 

maximum EMS amplitude. 

Sample 
Mass 

(g) 

density 

(g/cm
3
) 

volume 

(cm
3
) 

Magnetite 

in sample 

(g) 

Magnetite 

in sample 

(%) 

Ultimate 

strength 

(kN) 

max EMS 

(mV) 

1 360 3.21 112 57 16 158.6 350 

2 380 3.45 110 118 31 279.8 20 

3 393 3.60 109 157 40 196.5 800 

 

The magnetite mass in the sample is calculated by the formula: 
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where mM
 
is magnetite mass, g; m  

is magnetite density, g/cm
3
; oV

 
is sample volume, cm

3
; o  

is 

sample density, g/cm
3
; vm

 
is density of the enclosing rock, g/cm

 3
. 

As can be seen in Table 1, the ultimate strength of the samples does not correlate with the 

magnetite content. The EMS amplitude does not correlate to the ultimate strength as well. However, 

this does not mean that there is no dependence between the parameters. Structurally-textural features 

of the samples and the quartz content may considerably affect the parameters. This is proved by the 

study which shows ten-fold increase in the EMS amplitude in the sample containing quartz in 

comparison with the sample containing no quartz under acoustic impact [29]. Analogous results were 

obtained by other researchers [30–31]. In particular, in [31], in the experiment on dynamic 

compression of rocks, it was found that the EMS amplitude for a gabbro sample with 2 % of quartz 

was six times less than that for a granite sample with 36 % of quartz. Quartz inclusions are randomly 

arranged by volume in magnetite ores samples, and this can explain significant difference in the EMS 

amplitude in the samples in our experiments. 

The task for enclosing rock samples was to estimate the relations between the ultimate strength and 

the parameters of the recorded EMS. For this purpose, the analysis of analogue electromagnetic 

signals was carried out. Each sample was subjected to dynamic impact for 2 times. As the EMS 

amplitude oscillations varied from 4 to 10 %, their values were averaged. The average EMS 
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amplitude, average duration of the signal and the mean value of the EMS amplitudes were calculated. 

Table 2 shows the data of the analysis. 

 

Table 2. EMS parameters of skarn samples under acoustic impact. 

Sample Strike 

EMS 

peak-to-

peak (V) 

Averaged 

peak-to-

peak (V) 

Signal 

duration 

(ms) 

Averaged 

signal 

duration 

(ms) 

Amplitude 

EMS 

(V) 

Averaged 

amplitude 

EMS 

(V) 

Ultimate 

strength 

(kN) 

4 1 0.0296 
0.0284 

11.5 
13.05 

0.018 
0.0164 222.8 

4 2 0.0272 14.6 0.0148 

5 1 0.0428 
0.045 

37.5 
37.15 

0.0232 
0.0264 127.6 

5 2 0.0472 36.8 0.0296 

6 1 0.0948 
0.1002 

22.9 
30.1 

0.0432 
0.0388 125.2 

6 2 0.1056 37.3 0.0344 

7 1 0.0736 
0.072 

21.8 
22.8 

0.0324 
0.0314 110.6 

7 2 0.0704 23.8 0.0304 

 

The analysis of the data presented in Table 2 shows that the averaged EMS amplitude and its 

duration decrease as the ultimate strength increases under acoustic impact on skarn samples by the 

dynamic method. 

5. Conclusions 

Real samples of the iron ore deposit have been tested. These were skarns as an enclosing rock and ore 

samples with magnetite. The iron ore deposit is useful because of ore extraction is performed through 

blasting. All works in mine are accompanied by various acoustic effects, and acoustic waves passing 

through inhomogeneities produce EMS. Samples with different ultimate strength were tested to reveal 

the dependence of EMS parameters on rock properties. This is an integral characteristic that depends 

on petrographical features. The dynamic method of acoustic impact has shown that as the ultimate 

strength of enclosing rocks increases, the average EMS amplitude and its duration decrease. However, 

this dependence is not characteristic of samples containing magnetite that can be attributed to its 

complicated structurally-textural features and quartz inclusions present in the volume. 
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