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Abstract. Complex modification of a surface of commercially pure titanium is realized. Firstly 

plasma is created by electrical explosion of a carbon-graphite fiber, of which surface was 

placed nanosized TiB2 powder. Then the surface of technically pure titanium is processed with 

this plasma.  Finally, the modified surface was irradiated by an electron beam. Formation of 

multi-layer multiphase nanosized structure is revealed. It is shown that the maximum 

microhardness reached in a near-surface layer exceeds microhardness of a initial material more 

than by 10 times. Wear resistance of a blanket increases in 7.5; the friction coefficient 

decreases by 1.15 times. 

1.  Introduction 

Currently, one of the most promising approaches to creation of wear-resistant coatings is a method of 

formation of composite materials with titanium diboride. Such a composite material has a high load-

bearing capacity combined with high physical and mechanical properties (high hardness, low values of 

the thermal expansion coefficient, low sensitivity to heat shock) and is not subject to plastic 

deformation which contributes to accumulation of defects in a crystalline lattice and the subsequent 

damage during a tribological contact. Such a surface is possible to create using pulsed melting with 

simultaneous saturation of the material surface layers with doping elements followed by crystallization 

and formation of strengthening phases, carried out by plasma formed during an electric explosion of a 

conductive material (electroexplosive doping), is one of the promising methods for modification of the 

structure and properties of metals and alloys. 

This paper presents the results of the study on the combined treatment effect, which includes 

electroexplosive doping and the subsequent exposure to a high-intensity pulsed electron beam, on the 

structural-and-phase state of the surface layer of the alloy based on titanium VT1-0. 

2.  Materials and methods of study 

Doping of the surface layer of the alloy based on titanium VT1-0 was carried out by exposure to 

plasma formed during an electric explosion of a graphitized carbon fiber, on the surface of which in 

the explosion area a sample of the powder of titanium diboride TiB2 was placed. Additionally, pulsed 

melting of the modified layer was carried out with a high-intensity electron beam on the installation 
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“Solo”, under the mode: electron energy 18 keV, energy density of the electron beam (45-60) J/cm
2
, 

duration and the number of exposure pulses 100 ms, 10 pulses; 200 ms, 20 pulses, the pulse repetition 

rate 0.3 s
-1

. Structural studies were carried out using methods of scanning and electron diffraction 

microscopy, X-ray analyses; physical-and-mechanical properties of the surface layer were studied by 

measuring the microhardness, the wear resistance, and the friction coefficient. 

 

3.  Experimental results and their discussion 

According to the literature data on the enthalpy, formation of compounds in systems Ti-B [1] and Ti-C 

[2] is significant and it indicates a high stability of compounds TiB2 and TiСХ (Fig. 1). 

 

 
 

Figure 1. The enthalpy of compound formation in systems Ti-B (curve 1) [1] and Ti-C (curve 2) [2] at 

298 K 

 

In the system Ti-B during the crystallization three intermediate phases from the side B are formed: 

TiB, Ti3B4, TiB2 [3] (Fig. 2). Mutual solubility of components in the solid state is virtually absent. At a 

temperature of 1540 ± 10 °C the eutectic (βTi) + TiB is crystallized. The compound TiB2 melts 

congruently at 3225 ± 25 °C, it has a small homogeneity range. Compounds Ti3B4 and TiB are formed 

by peritectic reactions at temperatures of 2200 °C and 2180 °C, respectively [4]. Titanium is a 

transition metal and has an unfilled 3d-band [5]. Among elements of the group IVA it is the most 

electronegative metal and has an atomic radius (RTi = 0.1462 nm). Formation of compounds with a 

variety of elements of the periodic system is characteristic of titanium; as well as formation of limited 

solid solutions. 

There are several known crystalline modifications of boron (Fig. 2) [6]. For example, in the 

structure of silver boron atoms form a three-dimensional framework, whose basic structural unit is an 

icosahedron with 12 boron atoms at its vertices. Icosahedra are interconnected by means of 

intermediate boron atoms, which are not part of any of the icosahedron, and boron atoms that are part 

of icosahedra. This leads to the fact that boron atoms in crystals have different coordination numbers: 

4, 5, 6, and 5 + 2 (5 near “neighboring” and 2 more distant). According to the electronic configuration 

1s
2
2s

2
2p

1
 there are three electron atoms of boron on the outer shell, and this leads to the fact that each 

bond in the crystalline boron has less than 2 electrons. Thus, in the crystalline state the main bond type 

for boron is covalent with electron deficiency [6]. 

In the system Ti-C there is one carbide compound TiC() with a structure B1 (prototype NaCl, 

Pearson symbol sF8, sp. gr. Fm3m) [4]. The compound TiC() melts congruently at 3073± 25 °C and 

the content is ~44% (at.) C. The homogeneity range of the phase TiC near the solidus is from 32 up to 

50% (at.) C. Carbon decreases the melting point of Ti from 1663 to 1653±7 °C - the temperature of 

eutectic crystallization L  Ti + TiC(); a eutectic contains 1.5% (at.) [4]. From a structural point of 

view, the compound TiC () is a solid solution of nonmetal atoms in octa-interstitial sites of the FCC-

lattice of metal [7]. Consequently, in the literature carbide TiC () is often referred to as TiCх. 

Structural parameters of the compound TiCх depending on the carbon content are shown in Table 1. 
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Figure 2. Elementary cells of borides in the binary system Ti-B, depending on the concentration and 

their homogeneity range. 

 
 

Table 1. Structural data on ordered phases as a result of PT ' [4] 

Composition Syngony Sp. gr. Elementary cell parameters TC, С ' 

Ti8C5 trigonal R3m а = 0.6115 nm, с =1.490 nm 

in hexagonal axes  

 

TiC0.67 rhombic  а= 2а0 7855  

TiC0.58 rhombic  а= 2а0  

TiC0.53 rhombic  а= 2а0  

TiC0.46 - TiC0.60    590 

We shall note the following important points that reflect features of the crystalline structure of the 
phase TiCх: 

1) an important role of the size factor in formation of carbide TiCх is evident, i.e. arrangement of 

non-metal atoms in octa-interstitial sites of the FCC-lattice of metal (Fig. 3), which is determined by 
the well-known Hagg’s rule (for TiCх the size factor is RС /RTi = 0.62); 

2) the presence of a very wide homogeneity range of titanium carbide (TiC0.48 - TiC1.0); 
3) the compound TiCх belongs to non-stoichiometric compounds of the interstitial phase type (or 

non-stoichiometric interstitial compounds), the concentration of defects (vacancies) in which provides 

the interaction among atoms; 

4) in the system Ti-C the symmetry of the metallic sublattice of non-stoichiometric compounds is 

different from the symmetry of the crystalline lattice of corresponding transition metals because 

titanium carbide crystallizes in the FCC structure in which a succession of layers of Ti atoms is well 

traced (Fig. 3);   

5) at a temperature below 1000 C the presence of ordering in the carbon sublattice (transition 

'-transformation) as in conventional solid solutions [4]; 

6) during the transition '-transformation, as a result of ordering of structural vacancies of the 

nonmetallic sublattice, a decrease in the symmetry of the space group of the crystal takes place, which 

results in crystallographically nonequivalent variants of joints of octahedra MS6 (in the structure B1 

octahedra are joined by ribs); 
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7) the solid-solution nature of TiCx and the structure-forming role of bonds of the nearest neighbors 

Ti-Ti is confirmed by data value and their physical properties [7]; 

8) according to modern concepts, a combined covalent-metal-ion type of chemical bond is 
implemented in non-stoichiometric interstitial compounds МСх.  

 

 
 

Figure 3. The crystalline structure of carbide TiCx: a – structure B1 with vacancies; b –structure B1 

without vacancies with a displaced origin of coordinates relative to the represented elementary cell; a, 

c – structure B1 with successively allocated alternating atomic layers of Ti atoms perpendicular to the 

direction of the type [111]B1 

 

Since the compound TiCx belongs to non-stoichiometric compounds with a wide homogeneity 

range of the interstitial phase type, the arrangement of structural vacancies leads to formation of a 

wide variety of crystalline structures. Fig. 4 shows variants of these crystalline structures. It should be 

noted that the published data on thermodynamic properties of non-stoichiometric titanium carbide is 

extremely limited. On the other hand, theoretical calculations predict a whole range of crystalline 
structures based on titanium carbide. Thus, Fig. 5 presents a cubic superstructure of the type М8Х7. It 

belongs to a perfectly ordered cubic phase with a space group R4332, which is predicted in [8]. 

 

  
 
Figure 4. Arrangement of cubic (space group Fm3m (a) and sp. gr. Р4332 (b)) elementary cells of the 

superstructure М8Х7 in the lattice with a structure Bl (NaCl) and (metallic sublattice is not shown) 1 – 

interstitial atoms; 2 – vacancies [7].  

 
Fig. 5 shows an isothermal section of the system Ti–В–С. On this diagram it can be seen that the 

mutual solubility at temperatures below 1400 °C is insignificant. The solubility of boride TiB2 in 

carbide TiC1-X is highly dependent on the stoichiometry of the carbide. This is reflected in the form of 

a non-uniform, in thickness, homogeneity range of carbide TiC1-X on the isothermal diagram. It also 

finds support on the quasi-binary section between the two coexisting phases TiC1-X and TiB2 (Fig. 6). 
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[9] This diagram is characterized by a eutectic transformation at a temperature of 2500 C and low 

mutual solubility in TiC1-X of boron atoms and carbon atoms in TiB2 at temperatures below 2000 C. 

In the case of TiC0.95 it is nearly 3% (mol.), and in the case of TiC0.68 it is nearly 7% (mol.) TiB2. 
Furthermore, the given isothermal section of the ternary diagram Ti–В–С indicates the absence of 

ternary intermediate compounds inside the isothermal triangle (Fig. 5). 

 

 
 

 

Figure 5. Isothermal section of the system Ti-B-C 

at 1400 K [9] 

 

Figure 6. Quasi-binary section TiC0.95−ТiВ2 of 

the system Ti-B-C [3] 

 

As previously noted, the system Ti-B-C was formed by doping of commercially pure titanium with 

plasma formed during an electric explosion of a graphitized carbon fiber, on the surface of which a 

sample of the nanoscale powder TiB2 was placed. An additional heat treatment of the modified in such 

a manner surface layer was carried out by irradiation with an intense pulsed electron beam in the 

melting mode of the surface layer with a thickness of (20-30) micrometers.  

Methods of the X-ray analysis revealed the phase composition of the complex modification of a 

surface of commercially pure titanium: –Ti - 17 %, TiC - 60 %, TiB2 - 14 %, Ti3B4 - 2 %, C  - 6 %, 

(B8C + B25C) - 1 %. The total volume fraction of second phases () after EED is 50%; an additional 

irradiation with an electron beam results in a non-linear change of the value : with an increase in the 

energy density of the electron beam from 45 J/cm
2
 to 60 J/cm

2
,  ranges from 25% to 83% reaching a 

maximum value at the energy density of the electron beam of 60 J/cm
2
 (pulse duration of the electron 

beam exposure is 200 ms). 

The study of the phase composition and the defect substructure of the surface layer of titanium 

modified using the combined method (plasma doping and the subsequent irradiation with an electron 

beam) was carried out using methods of electron diffraction microscopy of thin foils. It has been 

established that as a result of the combined treatment in the surface layer of commercially pure 

titanium a structure of dendritic crystallization based on titanium is formed; the section size of 

dendritic branches varies from 100 nm to 250 nm. Second-phase inclusions (predominantly titanium 

carbide of the composition TiC) are located in interdendritic spaces, particle sizes vary from 30 nm to 

50 nm.  

The structure of the layer located at a depth of 40...50 micron (the intermediate layer separating the 

melting zone from the heat affected zone) is formed by titanium grains with sizes varying from 80 nm 

to 200 nm. Second-phase particles with sizes varying from 10 nm to 25 nm are located on grain 

boundaries and junctions of grain boundaries. Indexing of micro-electron-diffraction patterns obtained 

from particles allows to conclude that they are, primarily, carbides and titanium borides.  
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Modification of the structure of the surface layer led to a multiple increase in mechanical and 

tribological properties of titanium. It has been established that the maximum microhardness achieved 

in the near-surface layer exceeds the microhardness of the basis by more than 10 times. The thickness 

of the hardened layer, the micro-hardness of which exceeds the micro-hardness of the basis by 5 

times, reaches 90 microns The wear resistance of the surface layer increases (relative to the wear 

resistance of the initial material) by 8 times. The friction coefficient decreases (relative to the friction 

coefficient of the initial material) by 1.2 times. Having analyzed the results obtained after 

constructing microhardness profiles it may be noted that one – three maxima of the microhardness, 

located at the surface and in layers at a depth of 30...50 microns and 80...90 microns, are formed 

depending on the mode of electron beam treatment. 

The carried out studies of the defect substructure and the phase composition of the modified 

surface layer allow to express opinions about physical mechanisms responsible for a significant 

increase in mechanical and tribological properties of titanium. It has been established that the main 

mechanisms responsible for an increase in mechanical and tribological properties of the material are 

solid-solution (saturation of the crystalline titanium lattice with atoms of carbon and boron); 

dispersion (allocation of nanoscale particles of carbide, boride, and carbide-boride phases); grain 

boundary (formation of a grain structure with submicron dimensions). 

4.  Conclusion 

The surface of commercially pure titanium was processed by plasma generated by the electric 

explosion of the carbon-graphite fibers, the surface of which is placed nanosized TiB2 powder. 

Additional heat treatment of the modified in such a manner surface layer was carried out by irradiation 

with an intense pulsed electron beam in the mode of the surface layer melting. Formation of a 

multilayer multiphase nanoscale structure with high values of hardness and wear resistance is 

revealed. It is shown that the maximum micro-hardness achieved in the near-surface layer exceeds the 

micro-hardness of the basis by more than 10 times; the thickness of the hardened layer, the micro-

hardness of which exceeds the micro-hardness of the basis by 5 times, reaches 90 microns. The 

wear resistance of the surface layer increases (relative to the wear resistance of the initial material) by 

7.5 times; the friction coefficient decreases by 1.15 times. Based on the study results of the phase 

composition and the defect substructure, physical mechanisms ensuring high strength properties of the 

modified layer of titanium are proposed. 
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