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Abstract. The paper deals with the investigations of the effect of cathode emissivity on the 

regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the 

emissivity due to the so-called high-emissivity tablet allows the essential decrease in the 

discharge initiation voltage and the discharge burning voltage. The model of current sustaining 

for the hollow-cathode discharge, which takes into account the external emission current has 

been developed. On basis of the model, the current-voltage characteristics of the discharge 

have been interpreted. 

1. Introduction 

Since the end of 1980’s, a considerable interest has been generated in a new type of low-pressure 

switching device with a cold cathode, often named the pseudospark switch or the cold cathode 

thyratron [1–8]. A range of operating pressures of the switch corresponds to the conditions of the left 

branch of Paschen's curve when the electron free path for ionization is much in excess of the electrode 

separation. Under such conditions, for both self-breakdown of the main gap of the switch and for 

external discharge triggering a considerable prebreakdown electron current is required [2–4]. This 

current is provided due to a trigger unit that is placed in the cathode cavity of the main gap [3]. 

Various types of the trigger units are used in the switches [1, 3]. One type of the trigger devices is 

based on an auxiliary low-current hollow-cathode glow discharge. The conditions of the auxiliary 

discharge burning significantly determine the rating characteristics of the switch itself. Therefore, the 

investigations of the auxiliary discharge seem to be of a great importance. 

In this paper, the data on the influence of the cathode emissivity on the regimes of the auxiliary 

glow discharge are presented. The model for current sustaining in hollow-cathode discharge has been 

developed. The current-voltage characteristics are interpreted with a usage of the model. 

2. Experimental setup and summary of experimental data 

The experiments were carried out with the sealed-off switches TPI1-10k/50 [3] whose schematic 

arrangement is shown in figure 1. The ceramic casing of the device has an external diameter of 95 

mm. The operating pressure is maintained due to a hydrogen reservoir that is powered by a voltage VH 

at a current of about 2 A. The auxiliary glow discharge in the trigger unit is initiated and sustained due 

to the power supply V1. The cathode cavity has the following dimensions: cavity diameter D = 3 cm, 

cavity height h = 2.9 cm. The cavity C1 communicates with the main cathode cavity C via the axial 

hole with a diameter D1 = 1.2 cm. Due to this hole a parasitic current i2 inevitably flows from the 
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anode A1 to the cathode cavity C. The presence of this parasitic current can lead to decreasing the 

breakdown voltage of the main gap. In the experiments we measured the separate components of the 

total discharge current i, as figure 1 shows ( Giiii  21 ). 

 

Figure 1. Schematic arrangement of the switch  

TPI1-10k/50 and the method of measurement of 

current-voltage characteristics. A  anode of the 

switch, C  hollow cathode of the switch, G  

intermediate gradient electrode, A1  ring anode of 

the auxiliary glow discharge, C1  hollow cathode of 

the auxiliary glow discharge, EC  high emissivity 

cylinder, V1  voltage for powering the auxiliary 

glow discharge, VH  voltage for powering of a 

hydrogen reservoir, R1 = (20  65) k  ballast 

resistor. 

To increase the cathode emissivity the so-called high-emissivity tablet (emissivity cylinder) EC is 

used. The tablet is placed in the hollow cathode C1. It represents a hollow cylinder that is fabricated 

from the powder materials by means of hot-pressing and sinter technology [3]. The basic component 

of the cylinder is the powder tungsten (90 %) to which aluminium oxide and cesium carbonate are 

added. In experiments we also used the switches without high-emissivity without tablet. 

As far as the experiments were carried out with the sealed-off switches, a gas pressure in the switch 

was determined by the hydrogen reservoir that was powered by a voltage VH. Then from one switch to 

the other, the same gas pressure can be achieved at different values of VH. Since the geometry of the 

main gap was identical, we estimated a gas pressure inside the switches by measuring the static 

breakdown voltage in the main gap. 

Figure 2 shows a typical current-voltage characteristic of the auxiliary glow discharge and a 

fraction of parasitic current in total discharge current i2/i for the switch without the high-emissivity 

cylinder. The characteristic is rather intricate. Discharge is able to burn in two regimes. Regime I 

corresponds to the so-called hampered glow discharge with hollow cathode. In this regime a length of 

the cathode voltage drop region is comparable with the radius of hollow cathode D/2 and a negative 

glow region is not distinctly observed. In this regime, increasing of the voltage V1 shifts the operating 

point over the curve to the right. When we decrease a voltage of power supply V1, then in a vicinity of 

point 1, the discharge is extinguished. 

A critical value of the discharge current corresponds to point 3 in the current-voltage characteristic. 

A further increase in voltage V1 leads to a sharp transition to the regime II (to point 4). In this mode of 

operation, the negative glow region appears. The discharge conditions are transformed from the 

hampered regime to an ordinary glow discharge with hollow cathode. In the regime II a hysteresis of 

current-voltage characteristic takes place. When we decrease a voltage V1, the operating point is 

shifted to the left up to point 5. After that a reverse abrupt transition to the hampered regime I occurs. 

The same characteristics with hysteresis are typical for a wide range of gas pressure (voltages VH). 

The main features of the discharge without high-emissivity tablet are rather high values of the 

discharge initiation voltage and of the discharge burning voltage Vd. For example, for VH = 6.2 V and 

VH = 5.6 V the discharge initiation voltages are 1230 V and 3500 V correspondently. 

A current-voltage characteristic for the case of the enhance cathode emissivity is shown in figure 3. 

The principal difference from the conditions without tablet is the absence of the abrupt transition from 

regime I to regime II. The discharge burning voltage is essentially decreased (up to a value Vd  130 
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V). As for the discharge initiation voltage (the static breakdown voltage in the trigger unit), this value 

corresponds to 380 V for VH = 5 V and to 280 V for VH = 5.6 V. 

  
Figure 2. Current-voltage characteristic for the 

auxiliary glow discharge and a fraction of 

parasitic current in total discharge current i2/i for 

the trigger unit without the emissivity cylinder. 

VH = 6.2 V, R1 = 25.6 k. 

Figure 3. Current-voltage characteristics for the 

auxiliary glow discharge and a fraction of 

parasitic current in total discharge current i2/i for 

the trigger with the emissivity cylinder. 

VH = 5.6 V, R1 = 65 k. 

 

As noted earlier, when the glow discharge burns between the electrodes A1 and C1, some fraction of 

the current inevitably flows from the anode to the main cathode cavity C. In general, this current has to 

be minimized. For the cases of the cathode with the high emissivity a current to the electrode C does 

not exceed 4 % of the current i in wide range of the discharge current in the trigger unit, whereas for 

the cathode with an ordinary emissivity the fraction of current can achieve to 20 %. 

3. Description of the model and interpretation of the experimental data 

It is convenient to interpret the regimes of the auxiliary glow discharge and to carry out the 

corresponding estimations with a usage of the model that had been developed earlier for the high-

current hollow-cathode pulsed glow discharge [5]. Illustration of the essence of this model is shown in 

figure 4. The cathode cavity C is filled with the negative glow plasma NG. The electrons emitted from 

the cathode are accelerated in the cathode layer lc by the voltage drop Vc and the energy of the fast 

oscillating electron is spent for sustaining the negative glow plasma. 

A steady state plasma density in the hollow cathode is established due to a balance between the 

process of ionization and the processes of the losses of charged particles. We do not take into account 

the recombination process. The ions disappear from the negative glow plasma due to their outflow to 

the cathode. The ions move in a collisionless regime under a potential difference kTe/2e, which is 

applied to the so-called pre-sheath layer. Since the recombination losses are negligibly small and lc 

D/2, a length of the pre-sheath layer corresponds to D/2.  

Total discharge current at the cathode surface i is a sum of the emission current iem and the current 

of ions to the cathode ii. The discharge current to anode is provided by the fast electrons from plasma 

that are able to overcome the potential barrier V near the anode. 

In the generally accepted models, the ion emission current at the cathode surface is provided by the 

classical  processes (iem = ii) [9]. In our model we introduce the additional emission current at the 

cathode which appears due to a source of external emission iext [5]. It should be stressed that an 

external emission current is inevitably available in any type of glow discharge. For example, the 

negative glow plasma has to be considered as the external source of radiation with respect to the 
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cathode surface [10]. Then the component of external emission current is provided due to photoeffect 

at the cathode. 

Beside that, there is a great variety of the discharges in which the other physical reasons for 

appearing the external current exist. The widespread reason for arising the current iext is formation of 

the spark cathode spots as a result of explosive processes at the cathode [2, 5, 1114]. In the sources of 

electron and ion beams with plasma cathode [1517], the additional emission current is often provided 

due to external injection of electrons in the plasma of hollow cathode or hollow anode. As for the 

particular case of this experiment, the high-emissivity tablet is responsible for the external emission 

current. 

 

Figure 4. Schematic illustration of the discharge 

regions and the potential distributions as applied to 

the model of current sustaining in hollow cathode 

glow discharge. 

NG  plasma of the hollow cathode (negative glow 

plasma; lc  cathode voltage drop region; 

V = (VamVd)  negative potential barrier near the 

anode; i = (iem+ii)  total discharge current at the 

cathode surface that is equal to current at the anode 

surface and in the external circuit. 

 

 

Then in terms of the model, the emission current from the cathode can be written as 

 
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iiii . (1) 

It is convenient to use an external parameter  as a fraction of the external emission current in the 

emission current appearing due to ion bombardment of the cathode 

 
i

ext

i

i


 . (2) 

Equations (1) and (2) allow us to introduce a generalized coefficient of the secondary processes  
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After simple manipulations we can obtain the expression for total discharge current 

 emiiemac iiiiiii





1
)1( . (4) 

Proceeding from the power balance in the hollow cathode the condition for discharge sustaining 

can be obtained [5] 
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where KS = (1–SD/SC) is a geometrical factor (SD – anode area, SC – area of the surface of cathode 

cavity) and  

 
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e

kT
V

e
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VV ee

2

32
*2 . (6) 

The physical meaning of V2 is the total cost of ionization under the effect of electron beam and V* 

is the energy which the accelerated electron spends for one act of ionization with taking into account 

only the energy losses for gas excitation and for elastic collisions. 

As distinct to [9], in the framework of this model, we can obtain a correlation between the total 

discharge current and the external emission current as 

 Kiiii extextextc 


























1
1

1
1 . (7) 

The results of estimations are presented in the Table below. In the calculations we have used the 

following parameters of the discharge: eV* = 55 eV, kTe = 5 eV, KS  1, V  0, Vc = Vd [5] 

 

Table 1. The results of estimates as applied to data presented in figures 2 and 3. 

The first line shows the operating points of the current-voltage characteristics. 

 2 3 4 6 

Vd, V 398 416 396 127 

i, mA 16.6 24.5 25.5 16.3 

 0.166 0.159 0.167 0.544 

 0.387 0.326 0.394 3.533 

K = i/iext 25.11 29.63 24.67 3.64 

lc, cm  0.863 0.732 0.694 0.425 

The point 1 is not suitable for estimation since the cathode layer length lc is comparable with D/2. 

Minimal value of  = 0.159 corresponds to point 3 of the hampered glow discharge. From this point a 

sharp transition to the regime II occurs. This transition is accompanied by a slight increase in 

generalized coefficient of secondary electron emission . We believe that this increase is associated 

with the fact that the contribution of external current to emission current slightly increases. 

The largest contribution of external current to total discharge current is observed in the case when 

high emissivity tablet is available in the cathode cavity. These conditions correspond to point 6 of 

current-voltage characteristic. Discharge burning voltage in this case is much less than for the regime 

II in figure 2, and coefficient  is three times higher. 

The ratio of the external current to the current due to the ion bombardment is characterized by the 

parameter  = iext/ii. To estimate this parameter we have to know the classical coefficient of secondary 

emission . In the calculations we use  = 0.12 [5]. Then for the case of the cathode with the high- 

emissivity tablet we obtain  = 3.53. It means that the current of external emission is more than three 

times higher as compared to the current due to ion bombardment of the cathode surface. 

For the ordinary glow discharge with a hollow cathode a fraction of external current in total 

emission current iem is small. Nevertheless, for the cases when emission current is set artificially, the 

contribution of the external current to the total emission current increases. For example, the balance of 

the currents at the cathode for the point 6 at figure 3 looks like as follows: ii = 10.56 mA, iext = 4.478 

mA, ii = 1.32 mA. Although the ion current is still higher than the emission current, this excess is not 

so considerable as for the classical glow discharge. This conclusion is illustrated by the estimation of 
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the coefficient K. For the hampered glow discharge, the typical values of the current enhancement 

coefficient is higher than 20. For the case of the cathode with the high emissivity, we obtain K  3.5.  
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