ОПТИМИЗАЦИЯ ВЫЧИСЛЕНИЯ ОБРАТНОГО БПФ НА МНОГОЯДЕРНОМ ПРОЦЕССОРЕ

А.Г. Черемнов, В.С.Аврамчук (г. Томск, Томский политехнический Университет)

OPTIMIZATION COMPUTATION OF THE INVERSE FFT ON MULTICORE PROSESSORS

A.G. Cheremnov, V.S. Avramchuk (s. Tomsk, Tomsk Polytechnic University)

The article describes the method of calculating the inverse FFT N-point sequence with a N-point complex FFT, also the implementation of similar approach for computing on multi-core computing architecture. The main quality parameters of similar organization such as speedup and efficiency of computing resources were analyzed.

В настоящее время корреляционный анализ находит широкое применение в следующих областях науки и техники: геология, биология, акустика, энергетика, физика и многих других. Необходимость использования эффективных способов вычисления быстрого преобразования Фурье (БПФ) и обратного быстрого преобразования Фурье (ОБПФ) возникает тогда, когда имеются требования на обработку больших массивов данных, или на работу в режиме, близком к режиму реального времени [1].

В наши дни существуют различные алгоритмы вычисления БПФ. Среди них выделяется алгоритм Кули-Тьюки, который является наиболее простым в реализации и легко подаётся распараллеливанию [2, 3]. Минимизация вычислительных операций достигается за счёт разбиения исходной анализируемой последовательности на две более коротких (рис. 1), что сокращает количество операций в два раза [4]. Отметим, что разбиение продолжается до тех пор, пока количество исходных отчётов не станет равным два.

Рис. 1. Разбиение и объединение последовательности при N=8

Схема эффективного вычисления ОБПФ через БПФ приведена на рисунке 2.

Рис. 2, Схема эффективного вычисления ОБПФ

Где Xre, Yre – действительные части входных и выходных сигналов соответственно, Xim, Yim – мнимые части.

В случае представления действительных и мнимых частей сигналов в отдельных массивах операция вычисления ОБПФ может быть сведена к операции вычисления БПФ путём перестановки указателей на начало этих массивов, повторной перестановки указателей после вычисления БПФ и дальнейшей нормализацией сигнала по величине N.

В качестве среды реализации алгоритмов БПФ была использована Microsoft Visual Studio 2012 Proffessional, а кроссплатформенная библиотека Intel ТВВ как инструмент параллельной разработки.

Метод обхода рекурсии в ширину использован для реализации параллельного вычисления БПФ. В экспериментальных вычислениях размер выборки комплексной последовательности варьировался от 8 до 131072 отсчётов. Экспериментальные исследования проведены на трех процессорах фирмы Intel: Core 2 Quad 6700, Xeon® 5160, Core i5-750. Произведено 1000 временных замеров 1000 преобразований ОБПФ, рассчитан доверительный интервал по каждой выборке с коэффициентом доверия 0,95. Эффективность реализованных алгоритмов оценена по следующим параметрам [5] S_p = T_p/T₁, E_p = (S_p/p)·100%

, где S_p – ускорение, E_p – эффективность, T_p и T₁ – время выполнения параллельного и последовательных кодов, р – количество вычислительных ядер.

Рис. 3 а) Зависимость ускорения от размера выборки;

б) зависимость эффективности использования вычислительных ресурсов от размера выборки.

Реализованный алгоритм ОБПФ в целом обладает хорошими показателями качества и может быть использован в качестве базового при расчете частотно-временных корреляционных функций [6, 7].

ЛИТЕРАТУРА

1. Айфичер Э.С., Джервис Б.У. Цифровая обработка сигналов: практический подход. 2-е изд. – М.: Вильямс, 2008. – 992 с.

2. Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов. — М.: Мир, 1989. — 448 с.

3. Аврамчук В.С., Лунева Е.Е., Черемнов А.Г. Способы повышения эффективности

вычисления быстрого преобразования Фурье//Интернет-журнал «Науковедение». 2013 №3 [Электронный ресурс].-М. 2013. – Режим доступа: <u>http://naukovedenie.ru/PDF/16tvn313.pdf</u>, свободный – Загл. с экрана.

4. Лайонс Р. Цифровая обработка сигнала. 2-е изд. – М.: Бином-Пресс, 2011. – 656 с.

5. Герпель В.П. Высокопроизводительные вычисления для многоядерных многопроцессорных систем. Учебное пособие. – М.: Издательство ННГУ им. Н.И. Лобачевского, 2010. – 421 с.

6. Аврамчук В.С., Чан Вьет Тьяу. Частотно-временной корреляционный анализ цифровых сигналов // Известия Томского политехнического университета. – 2009. –Т. 315. – № 5. – С. 112–115.

7. Аврамчук В. С. Определение наличия гармонических составляющих и их частот в дискретных сигналах на основе автокорелляционной функции // Известия Томского политехнического университета. - 2012 - Т. 321 –№. 5 – С. 113–116.

МОДЕЛИРОВАНИЕ ТЛЕЮЩЕГО РАЗРЯДА В ПОЛОМ КАТОДЕ

Нгуен Бао Хынг

(г. Томск, Национальный исследовательский Томский политехнический университет)

THE MODELLING OF GLOW DISCHARGE IN A HOLLOW CATHODE

Nguyen Bao Hung

(Tomsk, National Research Tomsk Polytechnic University)

This article discusses the modeling of low-temperature glow discharge generated plasma with a large area hollow cathode, both in a self-sustained mode and additional electron injection mode. The results of theoretical and numerical investigations of the discharge characteristics agree with experiments.

Introduction

Application of vacuum plasma technology for efficient ion cleaning and surface modification of large objects is based on obtaining low-temperature plasma generated by a glow discharge [1]. In this case, electron emission is a result of cathode bombardment by the ions formed in the discharge plasma [2–3]. If the electron energy relaxation length ($\Lambda = N\lambda$) is larger than the effective width $a = 4V/S_c$, then electrostatic trap effect appears. The discharge differs from the usual glow discharge, and the ionization rate by fast electrons is much higher than the ionization rate by plasma electrons [3]; λ – electron ionization range, N – the average number of unbound electrons produced on the way of a fast electron, V and S_c – volume and surface area of a hollow cathode.

The modeling of a low-pressure gas discharge in a hollow cathode

We consider a gas discharge inside a cylindrical cathode cavity with length D and diameter D. Anode (in the form of two tubes with a total area S_a) is located in the cathode sidewall (figure 1).