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Abstract. Bacterial infections related to dental implants are currently a significant 

complication. A good way to overcome this challenge is functionalization of implant surface 

with Ag nanoparticles (NPs) as antibacterial agent. This article aims at review the synthesis 

routes, size and electrical properties of AgNPs. Polyvinyl pyrrolidone (PVP) and 

polyethyleneimine (PEI) were used as stabilizers. Dynamic Light Scattering, Nanoparticle 

Tracking Analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy 

dispersive spectroscopy (EDX) have been used to characterize the prepared AgNPs. Two types 

of NPs were synthesized in aqueous solutions: PVP-stabilized NPs with a diameter of the 

metallic core of 70 ± 20 nm, and negative charge of -20 mV, PEI-stabilized NPs with the size 

of the metallic core of 50 ± 20 nm and positive charge of +55 mV. According to SEM results, 

all the NPs have a spherical shape. Functionalization of the titanium substrate surface with 

PVP and PEI-stabilized AgNPs was carried out by dropping method. XRD patterns revealed 

that the AgNPs are crystalline with the crystallite size of 14 nm. 

1.  Introduction 

Metals have a long history in the treatments of dentistry and orthopedics. Pure titanium is commonly 

used as artificial joints and implants in both dental and orthopedic clinics because of its 

biocompatibility and mechanical properties. A major factor that determines the success of dental 

implantation is osseointegration, which is the stable anchorage of an implant in living bone achieved 

by direct bone-to-implant contacts [1, 2]. It is commonly known that the implantation of a foreign 

object into the human body may be rejected. Moreover, a wide range of local tissue reactions, in 

particular inflammation, giant cell formation and fibrosis can be induced [3]. A promising solution to 

this problem is formation of an antibacterial bioactive coating on the implant surface, which allows to 

avoid rejection and speed up the treatment and recovery process [4, 5]. 

The consequences of implant-associated infection are significant and usually require revision 

surgery, with removal of the implant and prolonged antibiotic treatment. Various approaches have 

been investigated to reduce the rate of infection. Two recent strategies are the coating of implants with 

antibiotics and followed by covalently attaching of antimicrobial nanoparticles to the implant surface. 

The remarkable mechanism of the antimicrobial activity of Ag nanoparticles (AgNPs) is related to the 

formation of free radicals and consequent free-radical-induced oxidative damage of the cell 

membranes of bacteria [6, 7]. The purpose of these bioactive surfaces is to disrupt the metabolic 

machinery of the microbes or to prevent bacterial adhesion to the implant and, consequently, the 

development of biofilm [8]. 

AMNT 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 116 (2016) 012009 doi:10.1088/1757-899X/116/1/012009

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

Currently, many methods have been reported for the synthesis of AgNPs by using chemical [9-11], 

physical [12, 13], photochemical [14, 15] and biological [16-18] routes. Each method has advantages 

and disadvantages with the common challenges such as production costs, scalability, particle sizes and 

size distribution. Among the existing methods, the chemical methods have been mostly used for 

production of AgNPs. Chemical methods provide an easy way to synthesize AgNPs in solution. 

A vast number of nanoparticle systems have been reported to be used to prepare highly stable Ag 

NPs, based on various groups that are capable of binding to metal surfaces: phosphonic acid [19], 

aminocellulose as a combined reducing and capping reagent [20]. Useful coatings for biomedical 

application and delivery of AgNPs, based on glutathione, thiols, disulfides, thioethers, thioesters, 

thiocarbonates, and thiocarbamates are used in the preparation of metal nanoparticles [21]. 

Poly(vinylpyrrolidone) (PVP) and poly(ethylenimine) (PEI)-stabilized AgNPs are stable in suspension 

and exhibit little change in size or electrophoretic mobility [22, 23]. 

The purpose of this study is to find appropriate parameters of AgNPs such as size, ζ - potential, 

charge for the deposition on metallic substrates. These parameters of AgNPs are important for the 

development of the structure of scaffolds. 

2.  Materials and methods 

2.1.  Samples preparation 

To prepare the samples as substrates commercially pure titanium (99.58 wt% titanium; 0.1 wt% 

oxygen; 0.15 wt% iron; 0.05 wt% carbon; 0.04 wt% nitrogen; 0.08 wt% silicon) plates (10×10 mm) 

were used. The plates were chemically etched in acid solution containing HF (48%) and HNO3 (66%) 

dissolved in the distilled water with the ratio 1:2:2.5 in volume. After acid etching, the samples were 

ultrasonically washed sequentially in ethanol and demonized water for 10 minutes at room 

temperature. 

2.2.  The synthesis of positively and negatively charged AgNPs 

The negatively chargedAgNPs were synthesized by wet chemical reduction method of silver nitrate 

(Fluker, p.a.) using glucose (D-(+)-glucose, Baker) as a reductant and polyvinylpyrrolidone (PVP K30 

Povidon 30; Fluka, molecular weight 40000 g mol
-1

) as a stabilizer. 2 g glucose and 1 g PVP were 

dissolved in 40 g water and heated to 90 °C. Then 0.5 g AgNO3 dissolved in 1 mL water was quickly 

added. The synthesis of positively charged, PEI-stabilized, AgNPs was proceeded without use of 

glucose. The 1g polyethylenimine (PEI; branched, Aldrich, molecular weight 25 000 g mol
-1

) was 

dissolved in 40 g water and heated to 90°C. Then 0.5 g AgNO3 dissolved in 1 mL water was quickly 

added. The dispersion was kept at 90 °C for 1 h, PVP-stabilized AgNPs and then left to cool to room 

temperature. The particles were collected by ultracentrifugation (3 times, 30 000 rpm, 30 min), 

redispersed in pure water and collected again by ultracentrifugation. Thereby NO
3-

, excess glucose and 

its oxidation products, excess PVP/PEI, and excess Ag
+
 were removed. The silver nanoparticles were 

further redispersed in water. 

2.3.  Characterization of AgNPs 

The hydrodynamic diameter (HDD) of the AgNPs were measured by Dynamic Light Scattering (DLS) 

using a Malvern Zetasizer Nano ZS and Nanoparticle Tracking Analysis (NTA) using a NanoSight LN 

10. Zeta (ζ) potential of the AgNPs were measured by DLS. Both of these methods are based on the 

rate of Brownian motion to particle size and applicable to analyse the particles of a diameter 10-2000 

nm in liquids. DLS technique is used to measure the diffusion of particles and converts this to the size 

and a size distribution using the Stokes-Einstein relationship. Non-invasive back scatter technology is 

used to give the highest sensitivity simultaneously with the highest size and concentration range. NTA 

is a unique method for visualisation. The light scattered by the particles is captured using a scientific 

digital camera and the motion of each particle is tracked from the frame to frame by the specially 

developed software. This rate of particles movement is related to a sphere equivalent hydrodynamic 
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radius as calculated through the Stokes-Einstein equation [24-26]. By scanning electron microscopy 

(SEM) the morphology and size of the AgNPs were estimated using an ESEM Quanta 400 FEG 

instrument operating in a high vacuum with gold/palladium-sputtered samples. The Grazing-incidence 

small-angle X-ray scattering (GISAXS) was used to determine the internal structure of studied AgNPs. 

The phase parameters of AgNPs were investigated by the method of X-ray diffraction in the Bragg-

Brentano geometry (Siemens Diffractometer D500), in a direction perpendicular to the diffraction 

plane, calculated according to the Scherrer Equation [27]: 

  ,
1

cos


 kRhkl      (1) 

where, Rhkl - crystallite size in the direction perpendicular to the diffraction plane hkl; k = 0.9, λ - 

wavelength of the analyzing X-ray beam; θ - angle subtended by the diffraction, β  = B1/2-b1/2 - the true 

width of the line; B1/ and b1/2 - experimental and instrumental broadening of the width of the 

diffraction peak at half intensity. 

2.4.  Dropping method of AgNPs deposition 

The deposition of PVP and PEI stabilized AgNPs on titanium substrate was done by dropping method. 

The process of dropping method based on formation of a drop 120 µL of the working solution with the 

concentration 60 µg/mL and following drying at 55.5°C. 

3.  Results and discussions 

Table 1 contains information about the diameter of the metallic core, HDD as determined through 

DLS, the PDI and ζ–potential. The HDD, ζ-potential and polydispersity index (PDI) of the 

nanoparticles were measured by DLS using a Malvern Zetasizer Nano ZS. The results of DLS analysis 

revealed that PVP-stabilized AgNPs had the ζ- potential of -20 mV, average HDD of 110 nm and PDI 

of –0.195, indicating the absence of large agglomerates and presence of a monodisperse system. 

Figure1 illustrated the data describing PVP-stabilized AgNPs with the dispersion time 1 hour. The 

SEM analysis confirmed the ability to attain a uniform distribution of AgNPs. Thus, SEM images 

showed that the PVP-stabilized AgNPs had a spherical shape with a diameter of the metallic core of 

70±20 nm. It is reported [28] that silver nanoparticles (PVP-stabilized, 70 nm) affected the viability of 

Staphylococcus aureus colonies. The antimicrobial activity of silver nanoparticles was tested using 

standard methods which determine the minimum inhibitory concentration (MIC) and the minimum 

bactericidal concentration (MBC). S. aureus (10
6
 cells mL

-1
 in medium) was treated without (S. aureus 

in pure medium: positive control; pure medium: negative control) or with 50 mg/mL or 30 mg/mL of 

silver nanoparticles for 24 h under cell culture conditions. Subsequently, the bacteria were plated and 

incubated for further 24 h at 37 °C on blood agar plates. From the reported experiments and the 

available literature on the dissolution of silver nanoparticles, they conclude that the particles will 

dissolve after coming into contact with air, therefore they will become increasingly bactericidal (and 

cytotoxic) with time. 
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Figure 1. a) SEM image of PVP-stabilized AgNPs, b) DLS estimated 

distribution size of AgNPs. 

The results of DLS analysis of PEI-stabilized AgNPs showed the ζ-potential of +55 mV, average HDD 

of 110 nm (figure 2). The PDI for PVP-stabilized AgNPs was lower than 0.3, which could indicate 

that system was monodisperse, however, PDI in case of PEI-stabilized AgNPs was slightly more than 

0.3. Moreover, according to DLS of AgNPs obtained using PEI had a multidistribution. Typical SEM 

image of AgNPs with spherical shape was shown in figure 2. Zhiguo Liu et al. [29] showed that the 

PEI-functionalized Ag nanoparticles were positively charged. Moreover, the Ag colloids exhibited 

stronger antibacterial activity in the bactericidal test. Its bactericidal efficiency exceeds the commonly 

used antibacterial agents such as Erythromycin, chloramphenicol and penicillin as well as AgNO3 

solution. These results prove that our synthesis method is efficient to produce a stable PEI-

functionalized Ag colloid with excellent antibacterial activity. 

 

Figure 2. a) SEM image of PEI-stabilized AgNPs, b) DLS estimated 

distribution size of AgNPs. 

Negatively charged AgNPs are monodisperse and have a narrow size distribution. These properties 

of AgNPs are prospective to develop antibacterial layers on implant surfaces. 

Table 1. The properties of silver nanoparticles stabilized with PEI and PVP polymer. 

Polymer Diameter, nm PDI 

 

ζ–potential, mV 

NTA DLS SEM 

PVP 115 110 70 0.195 -20 

PEI 30 110 50 0.404 +55 

 

To form an antibacterial interface of metal implant the dropping method was used (120 µL with 

concentration 60 µg/mL). 
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The patterns of AgNPs distribution on titanium surface substrate are shown in figure 3. 

 
 

Figure 3. SEM images distribution of AgNPs on the surface of pure titanium by drop method 

(120 µL with concentration 60 µg/mL) stabilized with a), c) PVP and b), d) PEI. 

SEM images revealed that the both types of AgNPs have a spherical shape (figure 3). PVP-

stabilized AgNPs were homogeneously distributed over the entire surface. Dropping method has the 

disadvantage associated with the surface tension and as a consequence the samples are not fully 

covered by the particles. The particle size of PEI-stabilized AgNPs was smaller than PVP-stabilized 

AgNPs as it could be seen from the obtained data (Table. 1). In case of positively charged AgNPs the 

dropping method does not allow a complete and homogeneous coverage of the sample surface. The 

negatively charged AgNPs were used to create a homogeneous layer of AgNPs on the surface of 

titanium without any agglomeration. Negatively charged AgNPs were studied by XRD to reveal their 

structure parameters. In figure 4 and Table 2 the typical XRD patterns are presented. 

XRD pattern of AgNPs on the titanium substrate showed the presence of reflexes at 2 Theta angles 

of 44.3° and 77.3°, which can be indexed to (200) and (311) planes of pure silver (PDF # 04-0783). 

Since the main reflection of titanium and silver were very close it was decided to use a silicon 

substrate as a control the presence of silver. 

The typical XRD pattern, which illustrates the formation of intense lines of reflection of the Ag, is 

shown on silicon substrate (figure 4). The presence of peaks at 2 θ values 38.1°, 44.3°, 64.4° and 77.3° 

corresponded to (111), (200), (220), and (311) planes of silver, respectively. Thus, the XRD pattern 
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confirmed the cubic crystalline structure of silver (JCPDS, 4-0783). The lattice constants calculated 

from XRD pattern of PVP and PEI-stabilized NPs were found to be a= 4.093 Å and 4.085 Å, 

correspondently. The crystallite size of AgNPs was found to be 14 and 13 nm in the case of titanium 

and silicon substrate, respectively (Table 2). The aim of the developed biocomposite is a long-term 

antibacterial protection against implant associated infections. 

 

Table 2. The lattice parameters and crystallite size of AgNPs on titanium and silicon 

substrate. 

Sample Lattice parameters Crystallite size, nm 

a=b, Å V, Å
3
 

Titanium 4.093 68.52 14 

Silicon 4.085 68.22 13 

 

 

Figure 4. The XRD patterns of AgNPs deposited by dropping 

method (120 µL with concentration 60 µg/mL) on titanium and 

silicon substrates. 

4.  Conclusions 

In this study two types of AgNPs were synthesized: PVP-stabilized negatively charged (-20 mV) 

nanoparticles with the size of 70 ± 20 nm and PEI-stabilized positively charged (+55 mV) 

nanoparticles with the size of 50 ± 20 nm. According to the SEM data, all the particles had a spherical 

shape. The dropping method was used for AgNPs deposition on titanium substrate. It was revealed 

that the dropping method did not allow to get a homogeneous layer of nanoparticles in case of the 

PVP-stabilized AgNPs. In contrast with the PVP-stabilized AgNPs, the uniform layer of PEI-stabilized 

AgNPs was formed. No agglomeration of AgNPs after deposition on the titanium substrate was 

observed. The XRD data obtained for the PVP-stabilized AgNPs on Ti substrate showed the typical 

peaks of Ag at 2 Theta angles of 44.3° and 77.3° with the coherent scattering region of 14 nm. 
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