УРАВНЕНИЕ ДВИЖЕНИЯ РАБОЧЕГО ИНСТРУМЕНТА ИСПОЛНИТЕЛЬНОГО ОРГАНА ГЕОХОДА

В.В. Аксенов***, д.т.н., проф., А.А. Хорешок****, д.т.н., проф., А.Н. Ермаков***, К.А. Ананьев*** *Институт угля СО РАН, г. Кемерово

**Юргинский технологический институт (филиал) ТПУ, г. Юрга

***Кузбасский государственный технический университет им. Т.Ф. Горбачева, г. Кемерово

650000, г. Кемерово, ул. Весенняя, 28, тел. (3842)-39-69-40

E-mail: ananiev k@rambler.ru

Для аналитического исследования движения рабочего инструмента, установленного на барабанном исполнительном органе геохода [1, 2]необходимо знать общие уравнения движения точки (резца) на барабане в обобщенных координатах.

При работе инструмент, установленный на барабане, который в свою очередь закреплен на головной секции геохода, совершает сложное движение (рис.1):

вращательное движение с угловой скоростью (020тносительно оси барабана, на котором он установлен;

- переносное вращательное движение с угловой скоростью ω₁вместе с барабаном относительно оси геохода;

- поступательное движение на забой с геоходомсо скоростью V₀.

Рис. 1. Схема геохода с барабанным исполнительным органом

Важным отличием в работе барабанного исполнительного органа геохода от традиционных планетарных является наличие жесткой связи между вращательным движением с угловой скоростью ω_1 и поступательным движением на забой со скоростью V_0 .

$$V_O = \frac{\omega_1 h_{\rm B}}{2\pi},$$

где *h*_в – шаг винтовой лопасти внешнего движителя.

В общем виде уравнение движения произвольной точки *М*на режущей кромке резца можно представить как функцию от ряда параметров [3]:

 $A_{M} = f(a_{1}, a_{2}, \dots a_{k}; b_{1}, b_{2}, \dots b_{l}; c_{1}, c_{2}, \dots c_{m}; \omega_{1}, \omega_{2}; V_{O}; l_{c}; \xi; t),$

где $a_1, a_2, ..., a_k$ – конструктивные параметры рабочей части резца; $b_1, b_2, ..., b_l$ – установочные параметры резца; $c_1, c_2, ..., c_m$ – конструктивные параметры барабана и установочные параметры барабана на геоходе; ω_1, ω_2 – угловые скорости геохода и барабана соответственно; V_O – скорость подачи геохода в направлении забоя; l_C – положение точки установки резца на барабане; ξ – параметр, определяющий положение исследуемой точки M на режущей кромке резца; t – время.

Для схемы на рис.2 общее уравнение движения точки M, заданной на режущей кромке породоразрушающего инструмента в матричной форме задается векторным произведением нескольких компонентов[3, 4, 5]:

$$A_M = A_{\Gamma} \times A_{BA} \times U_{\vec{0}} \times A_{CB} \times A_{DC} \times T_{MD}, \qquad (1)$$

где A_r – матрица абсолютного движения геохода относительно неподвижных координат; A_{BA} – матрица преобразования координат системы барабана $X_B Y_B Z_B до$ системы координат геохода $X_A Y_A Z_A$; U_6 – матрица вращения барабана относительно оси Y_B ; A_{CB} – матрица переноса системы резца $X_C Y_C Z_C$ в систему барабана $X_B Y_B Z_B$; A_{DC} – матрица перехода от системы координат твердосплавной вставки $X_D Y_D Z_D$ к системе резца $X_C Y_C Z_C$; T_{MD} – координаты точки M в системе координат $X_D Y_D Z_D$.

Рис. 2. Схема движения рабочего инструмента

Матрица абсолютного движения геохода относительно неподвижных координат, учитывающая поступательное перемещение вдоль оси Z_A со скоростью V_O и вращение относительно этой же оси с угловой скоростью ω_1 имеет вид:

$$A_{\Gamma} = \begin{bmatrix} \cos(\omega_{1}t) & -\sin(\omega_{1}t) & 0 & 0\\ \sin(\omega_{1}t) & \cos(\omega_{1}t) & 0 & 0\\ 0 & 0 & 1 & V_{O}t\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Матрица преобразования координат системы барабана $X_B Y_B Z_B do$ системы координат геохода $X_A Y_A Z_A$ учитывает наклон барабана на угол β_6 относительно оси X_A и смещение оси вращения барабана на относительно центральной оси геохода на величину *a* (рис. 3).

$$A_{BA} = \begin{bmatrix} 1 & 0 & 0 & -a \\ 0 & \cos(-\beta_5) & -\sin(-\beta_5) & 0 \\ 0 & \sin(-\beta_5) & \cos(-\beta_5) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Вращение барабана относительно оси Y_B с угловой скоростью ω_2 (см. рис. 2) описывается матрицей:

$$U_{5} = \begin{bmatrix} \cos(\omega_{2}t) & 0 & \sin(\omega_{2}t) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\omega_{2}t) & 0 & \cos(\omega_{2}t) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Матрица переноса системы резца $X_C Y_C Z_C$ в систему барабана $X_B Y_B Z_B$ представляется следующим образом:

$$A_{CB} = \begin{bmatrix} U_{CB} & T_{CB} \\ 0 & 0 & 1 \end{bmatrix},$$

где U_{CB} – матрица поворота резца на установочные углы θ_6 , $\theta_{\rm H}$, $\theta_{\rm n}$ в системе барабана $X_B Y_B Z_B$ (рис. 4) размерностью 3×3; T_{CB} – вектор переноса системы резца $X_C Y_C Z_C$ в систему барабана $X_B Y_B Z_B$ системы резца $X_C Y_C Z_C$ в систему барабана $X_B Y_B Z_B$.

$$T_{CB} = \begin{bmatrix} 0 \\ l_C \\ d_{\bar{0}} / 2 \end{bmatrix}$$

Рис. 4. Установочные углы резца на барабане

Вид матрицы поворота резца на установочные углы θ_6 , $\theta_{\rm H}$, $\theta_{\rm n}$ в системе барабана $X_B Y_B Z_B$ зависит от последовательности поворотов. В случае поворота сначала на угол θ_n , затем на θ_6 , затем на θ_H матрица U_{CB} представляется в виде векторного произведения:

$$U_{CB} = U_{ZB} \times U_{YB} \times U_{XB},$$

$$U_{Z_B} = \begin{bmatrix} \cos(\theta_{\pi}) & -\sin(\theta_{\pi}) & 0\\ \sin(\theta_{\pi}) & \cos(\theta_{\pi}) & 0\\ 0 & 0 & 1 \end{bmatrix}; U_{Y_B} = \begin{bmatrix} \cos(\theta_{\delta}) & 0 & \sin(\theta_{\delta})\\ 0 & 1 & 0\\ -\sin(\theta_{\delta}) & 0 & \cos(\theta_{\delta}) \end{bmatrix}; U_{X_B} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta_{H}) & -\sin(\theta_{H})\\ 0 & \sin(\theta_{H}) & \cos(\theta_{H}) \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta_{H}) & -\sin(\theta_{H})\\ 0 & \sin(\theta_{H}) & \cos(\theta_{H}) \end{bmatrix}$$

матрицы поворота резца относительно оси Z_B на угол θ_n , относительно оси Y_B на угол θ_6 , относительно оси X_B на угол $\theta_{\rm H}$.

В этих уравнениях знаки у углов установки рабочего инструмента могут быть как положительными, так и отрицательными.

Матрица перехода от системы координат твердосплавной вставки $X_D Y_D Z_D$ к системе резца $X_C Y_C Z_C$ (рис. 4) для радиального резца, взятого в качестве примера, имеет вид:

$$A_{DC} = \begin{bmatrix} \cos(\theta_{\rm T}) & 0 & \sin(\theta_{\rm T}) & -H_{\rm T.K} \\ 0 & 1 & 0 & 0 \\ -\sin(\theta_{\rm T}) & 0 & \cos(\theta_{\rm T}) & -H_{\rm pes} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Координаты точки M в системе координат $X_D Y_D Z_D$ для радиального резца (рис. 5, δ) определяются вектором

Рис. 5. Конструктивные параметры режущей части резцов *a)* – тангенциальный резец; *б)* – радиальный резец.

По уравнению (1) получена траектория движения вершины резцаза время полного оборота геохода (рис. 6) при следующих параметрах: диаметр геохода $D_r = 3,2$ м; $h_B = 0,8$ м; $\omega_1 = 6$ об/час; $\omega_2 = 0,5$ об/с; $l_C = 1,6$ м; $\xi = 0$; a = 0,34 м; $\theta_6 = 0$; $\theta_8 = 0$; $\theta_8 = 0$; $\theta_8 = 4,55^\circ$.

Рис. 6. Траектория движения вершины резца

Дифференцируя уравнение (1) по времени можно определить скорость и ускорение движения любой точки на режущей кромке произвольно установленного на барабане резца.

Полученное уравнение (1) позволяет анализировать движение инструмента и сравнивать параметры движения при различных его геометрических и установочных параметрах.

Литература.

- Винтоповоротные проходческие агрегаты / А.Ф. Эллер, В.Ф. Горбунов, В.В. Аксёнов. Новосибирск : ВО «Наука». Сибирская издательская фирма, 1992. – 192 с.
- Аксенов В.В., Садовец В.Ю., Бегляков В.Ю. Синтез конструктивных решений исполнительных органов геоходов // Горный информационный аналитический бюллетень (научно-технический журнал) Mining informational and analytical bulletin (Scientific and technical journal). Горное машиностроение / М.: издательство «Горная книга» – 2010. – ОВ №3. С. 49-54.
- 3. Крапивин, М. Г. Горные инструменты / М. Г. Крапивин, И. Я. Раков, Н. И. Сысоев. М. : Недра, 1990. 255 с.
- Ермак, В.Н. Лекции по теории механизмов и машин : учебное пособие. Кемерово : КузГТУ, 1999. – 218 с.
- Козлов, В.В. Динамика управления роботами / В. В. Козлов, В. П. Макарычев, А.В. Тимофеев, Е.И. Юревич. – М. : Наука, 1984. – 336 с.

ВЛИЯНИЕ СТАРЕНИЯ СТАЛЕЙ ПРИ ЭКСПЛУАТАЦИИ МНОГОСЛОЙНЫХ КОМПОЗИЦИОННЫХ АНКЕРОВ

Ю.А. Фадеев, д.ф.-м.н., проф., М.Д. Войтов, к.т.н., проф., Т.Е. Трипус, аспирант ФГБОУ ВПО «Кузбасский государственный технический университет им. Т. Ф. Горбачева» 650000, г. Кемерово, ул. Весенняя, 28

Вопросам повышения эксплуатационной надежности технологических систем и контролю в горном деле традиционно уделяется большое внимание. Специфичность условий эксплуатации оборудования, узлов и механизмов при добыче полезных ископаемых подземным способом требует учета влияния всех внешних факторов на работу как всей системы в целом, так и отдельных ее элементов. Анализ состояния технологической системы предполагает проведение постоянной диагностики технологической системы не только в текущем времени, но и прогнозировании состояния надежности в будущем, предсказывая возможные отказы как внезапного, так и постепенного характера.

С целью повышения устойчивости породного массива широко применяются анкерные крепи различных конструкций. Конструкционные особенности крепи, как правило, определяются условиями эксплуатации при конкретных горно-геологических состояниях массива. При решении задач, связанных с эксплуатации необходимо учитывать то обстоятельство, что металлические конструкции подвержены непрерывному активному воздействию ряда разрушительных факторов, таких как влажность, температура, внешние механические напряжения и т.д. Создавая механизмы и системы, исходят из принципов надежности, дешевизны и эксплуатационной долговечности изделий. Последнее качество играет в ряде случаев ключевую роль. Разработка защиты металла от внешних разрушительных факторов, выявление всех причин способствующих продлению физических свойств конструкционных сталей в настоящее время является актуальнейшей задачей.

Цель настоящей работы заключалась в учете старения сталей, при расчете напряжений в трубчатых многослойных цилиндрических анкерах.

Как известно, под старением стали понимается изменение её свойств, протекающее во времени без заметного изменения микроструктуры металла [1]. Различают термическое и деформационное старения. Процессы, связанные с изменением структуры металла, носят как общий, так и частный характер в области материаловедения. Ранее было установлено, что в многослойных системах, состоящих из различных материалов, их механические свойства зависят от различных факторов таких как, диффузия примесных атомов, рождение и аннигиляция дислокаций, их концентрация и скорость, а также другие причины, приводящих к дефектам кристаллической решетки и изменения механических свойств материала [2]. Изучение миграции различных дефектов показывает, что при обычных внешних условиях скорость их дрейфа к поверхности составляет несколько ангстрем в секунду [3]. В случае применения многослойных оболочек происходит накопление дефектов на приграничных областях к поверхностям. Такие процессы оказывают непосредственное влияние на прочностные свойства всей анкерной конструкции. С одной стороны скопление и увеличение концентрации дислокаций на границе оболочек анкера приводит к упрочнению системы в целом, а с другой – диффузия примесных атомов (в данном случае диффузия углерода из стали) приводит к снижению микроупругости, причем, чем выше перенасыщение стали углеродом, тем интенсивнее идет процесс старения [4]. Это обстоятельство необходимо учитывать при создании конструкций,