СИСТЕМА ЭЙНШТЕЙНА-ЭРЕНФЕСТА ДЛЯ УРАВНЕНИЯ ФОККЕРА-ПЛАНКА

Д.А. Иванов¹

Научный руководитель: профессор, д. ф.-м. н. А.Ю. Трифонов²

¹Национальный исследовательский Томский государственный университет,

Россия, г.Томск, пр. Ленина, 36, 634050

²Национальный исследовательский Томский государственный университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: ivanovda@tpu.ru

THE SISTEM OF EINSTEIN-ERENFEST FOR FOKKER-PLANK EQUATION

D.A. Ivanov

Scientific Supervisor: Prof., Dr. A.Yu. Trifonov

¹Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050

²Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: ivanovda@tpu.ru

Annotation. For solutions of the nonlocal Fokker-Plank equation the system of Einstein-Erenfest has been obtained in the class of semiclassically concentrated on k-dimensional manifold in n-dimensional space function. The solution of the referred integro-differintial equation has been reduced to the solution of the corresponding differential equation in the case of quadric linear potential.

Нелокальное уравнение Фоккера-Планка описывает эволюцию функции плотности вероятности координат и импульсов частиц в процессах, где важна стохастическая природа явления [1].

Запишем многомерное уравнение Фоккера-Планка с нелокальной нелинейностью и постоянным тензором диффузии:

$$D\frac{\partial u(\vec{x},t)}{\partial t} = \langle D\frac{\partial}{\partial \vec{x}}, TD\frac{\partial}{\partial \vec{x}} \rangle + \langle D\frac{\partial}{\partial \vec{x}}, \left[V_{\vec{x}}(\vec{x},t)u(\vec{x},t) + \lambda u(\vec{x},t) \int_{\mathbb{R}^n} W_{\vec{x}}(\vec{x},\vec{y},t)u(\vec{y},t)d\vec{y} \right] \rangle, \quad (1)$$

где T - некоторая постоянная матрица переноса, D - малый параметр, $\langle .,. \rangle$ -скалярное произведение, $\vec{x}, \vec{y} \in \mathbb{R}^n$, $V_{\vec{x}}(\vec{x},t), W_{\vec{x}}(\vec{x},\vec{y},t)$ - коэффициенты дрейфа, представляющее собой бесконечно гладкие функции, растущее при $|\vec{x}|, |\vec{y}| \to \infty$ не быстрее чем полином.

Решения уравнения (1), будем называть квазиклассически сосредоточенными на многообразии Λ_t^k [2]:

$$\Lambda_t^k = \left\{ \vec{X}(\tau, t) \mid \tau \in \Upsilon \subset R^k, t \in [0, T], T > 0 \right\} ,$$

где $\tau = (\tau_1, ..., \tau_k)$ - параметры многообразия. Вещественная функция $u(\vec{x}, t)$ принадлежит классу квазиклассически сосредоточенных класса (k), если для нее существуют обобщенные пределы

$$\lim_{D\to 0} u(\vec{x},t) = \int_{\Upsilon} \mathcal{S}\left(\vec{x} - \vec{X}(\tau,t)\right) \rho(\tau) d\tau.$$

Здесь $\rho(\tau)d au$ мера на Λ_t^k , $\int_{\Upsilon} \rho(\tau)d au = 1$ ·

Если функция $u(\vec{x},t)$ является квазиклассически сосредоточенным решением уравнения (1), то $\vec{X}(\tau,t)$ удовлетворяет уравнению [2]:

$$\frac{d\vec{X}(\tau,t)}{dt} = -V_{\bar{x}}\left(\vec{X}(\tau,t),t\right) - \lambda \int_{\Upsilon} W_{\bar{x}}\left(\vec{X}(\tau,t),\vec{X}(s,t),t\right) \rho(s) ds. \tag{2}$$

Уравнения (2) называются системой Эйнштейна-Эренфеста *k*-го порядка.

Особый интерес представляют собой случай симметричной функции $W(\vec{x}, \vec{y})$, а именно:

$$W(\vec{x}, \vec{y}) = W(\vec{y}, \vec{x}) = W(\vec{x} - \vec{y})$$
(3)

Если условие (3) выполнено, то вектор-функция $\vec{X}_C(t)$, описывающая динамику центра масс, удовлетворяет следующей задачи Коши

$$\begin{cases} \frac{d\vec{X}_C}{dt} = -V_{\vec{x}} \left(\vec{X}_C(t) \right), \\ \vec{X}_C(0) = \int_{\Upsilon} \vec{X}(\tau, 0) \rho(\tau) d\tau. \end{cases}$$
(4)

Отсюда видно, что динамика центра масс системы определяется системой Эйнштейна-Эренфеста θ -го порядка.

Рассмотрим случай квадратичного потенциала $V(\vec{x})$

$$V(\vec{x}) = \langle \vec{x}, A\vec{x} \rangle + \langle \vec{b}, \vec{x} \rangle + C, \tag{5}$$

где A, \vec{b} и C не зависят от \vec{x} . При выполнении условий (3) и (5) решение можно записать в виде:

$$\vec{X}(\tau,t) = \int_{\Upsilon} \delta \vec{x}(\tau,s,t) \rho(s) ds + \vec{X}_{C}(t),$$

где функция $\delta \vec{x}(\tau, s, t)$ решение следующей задачи Коши:

$$\begin{cases} \frac{d(\delta \vec{x})}{dt} = -V_{\vec{x}}(\delta \vec{x}) - \lambda W_{\vec{x}}(\delta \vec{x}), \\ \delta \vec{x}(\tau, s, 0) = \vec{X}(\tau, 0) - \vec{X}(s, 0). \end{cases}$$

В качестве примера рассмотрим систему $cV(\vec{x}) = k\frac{\vec{x}}{2}, W(\vec{x}, \vec{y}) = \exp\left(-\frac{(\vec{x} - \vec{y})^2}{2}\right)$ и начальным

условием $\vec{X}(\tau,0) = (\cos(\tau),\sin(\tau))$. Будем изучать функцию $r(\tau,s,t) = \delta x^2(\tau,s,t) + \delta y^2(\tau,s,t)$.

Она удовлетворяет уравнению:

$$\begin{cases} \frac{dr}{dt} = -2kr + 2\lambda \exp\left(-\frac{r}{2}\right), \\ r(\tau, s, 0) = \left(\cos(\tau) - \cos(s)\right)^2 + \left(\sin(\tau) - \sin(s)\right)^2. \end{cases}$$
 (6)

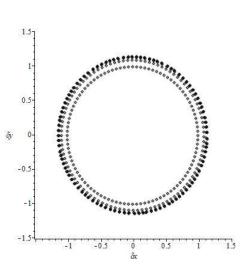
Система (6) допускает два стационарных решения $r_1=0, r_2=-2\ln\frac{k}{\lambda}$. Решение r_1 устойчиво

$$\begin{cases} \frac{k}{\lambda} > 1 \text{ if } k > 0, \lambda > 0, \\ \frac{k}{\lambda} < 1 \text{ if } k > 0, \lambda < 0. \end{cases}$$

Решение r_2 устойчиво, если

$$0 < \frac{k}{\lambda} < 1$$
 и $k > 0, \lambda > 0$

Условия на устойчивость стационарных решений системы (6) совпадают с условиями для исходной системы это показано на графиках (рис. 1, 2)



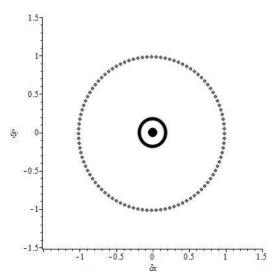


Рис. 1. Эволюция решения при k=1 и $\lambda=5$ с $\Delta t=0.4$

 $Puc.\ 2.\ Эволюция решения при k=5 и <math>\lambda$ =1 с Δt =0.4

Квазиклассически сосредоточенные решения, уравнения Фоккера-Планка удовлетворяют системе интегро-дифференциальных уравнений (2) Эйнштейна-Эренфеста. Показано, что при выполнении условий (5) и (3), система интегро-дифференциальных уравнений (Эйнштейна-Эренфеста) сводится к системе обыкновенных дифференциальных уравнений.

Работа частично поддержана программой «Наука», контракт № 1.676.2014/ К; грантом РФФИ № 15-06-05418.

СПИСОК ЛИТЕРАТУРЫ

- 1. Frank T.D. Nonlinear Fokker-Plank equations. Springer, Berlin, 2004. 1-17 c.
- 2. Лямкин В.А., Резаев Р.О., Трифонов А.Ю., Шаповалов А.В. Система Эйнштейна-Эренфеста типа (k, 1) для нелинейного уравнения Фоккера-Планка // Вест. Адыгейского гос.универ. Серия "Естественно-математические и технические науки". 2009. Вып. 2 (44). С. 25-37.