4	Проведение предварительных	Все время	Синебрюхов,
	встреч с ветеранами	реализации	Пащенко, Янкович
		проекта	
5	Съемка пробных видеороликов,	15 мая-10	Синебрюхов,
	их обработка и создание первого	июня	Пащенко, Янкович
	мини-фильма		
6	Освещение хода и результатов	Середина	Синебрюхов,
	проекта	июня	Пащенко, Янкович

В результате проделанной работы к середине июня мы должны отснять и смонтировать первый документальный мини-фильм, повествующий о тяжелой жизни в военные годы, о героических подвигах простых рабочих, солдат, фронтовиков и тружеников тыла.

Музыка электричества

Антипьев В. В., Дубинский Д. Г., Кухаренко Е. И., Хабибулин В. В., Харитонов А. Д., Коршунов В. С. banana744@yandex.ru

Национальный исследовательский Томский политехнический университет

Каждый человек видел молнию. Но немногие задумывались о том, что это опасное и ужасающее физическое явление может «создавать» музыку. В нашем проекте мы хотим предоставить Вам возможность познакомиться с таким уникальным применением электричества.

В настоящее время очень много молодых людей, выпускников школ не знают, как определиться с выбором дальнейшей профессии, чем можно заниматься и как проводить время с пользой и интересом. «Музыка электричества», конечно, не сделает выбор за человека, но этот проект нацелен на то, чтобы показать, что наука может быть интересной и увлекательной.

Также, многие музыканты ищут новые «фишки» и специальные приёмы в своём исполнении, чтобы их было привлечь слушателей и добавить новые веяния в свое творчество. Наш проект может пригодиться и им, ведь не часто можно услышать, как молнии создают знакомую мелодию.

Проект "Музыка электричества" представляет собой элементарный качер Бровина с изменяемой частотой колебаний (рис.1). Качер Бровина — оригинальный вариант генератора электромагнитных колебаний, который может быть собран на различных активных элементах. В настоящий момент чаще всего при его постройке используют биполярные или полевые транзисторы, несколько реже — радиолампы, причем как триоды, так и пентоды. Данный прибор был изобретен советским инженером Владимиром Ильичом Бровиным в 1987 г в качестве части электромагнитного компаса его конструкции [1]. По сути, качер Бровина является вариантом катушки Тесла на резисторах.

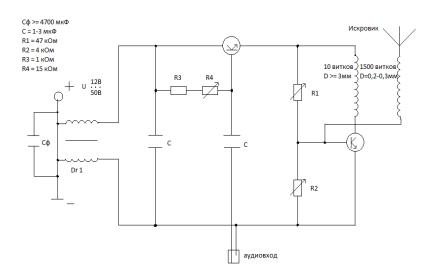


Рисунок 1. Схема устройства

Работу резонансного трансформатора, или катушки Тесла, можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда возрастает многократно. В нашем случае в роли «качелей» выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).

Благодаря качеру Бровина создаётся высокое напряжение (до нескольких миллионов вольт), и на вторичной катушке образуются разряды, которые можно наблюдать. При изменении частоты устройства с помощью музыкального инструмента или аудиоплеера разряды пронизывают пространство на разной частоте. Из-за этого мы слышим звуки, которые составляют мелодию. Вдобавок к звуку на небольшом расстоянии от устройства начинают светиться лампы, что опять же добавляет устройству интереса со стороны целевой аудитории.

В процессе работы катушки Тесла можно наблюдать четыре вида разрядов:

- Стримеры тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю.
- Спарк это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет.
 Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок искровых каналов. Также имеет место особый вид искрового разряда скользящий искровой разряд.
- Коронный разряд свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.

– Дуговой разряд образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние) [2].

Несмотря на то, что подобные идеи уже реализованы, наш проект имеет ряд преимуществ, таких как доступность в Томской области, низкая себестоимость, простота сборки, социальная направленность. Мы надеемся, что «Музыка электричества» будет способствовать популяризации науки среди молодежи и, возможно, поможет некоторым выпускникам сделать правильный выбор будущей специальности.

Список литературы:

- 1. Качер Бровина (изобретение и теория работы) // Чип и Дип. Приборы и электронные компоненты. Электронный ресурс. URL: http://www.chipdip.ru/video/id000280045 (Дата обращения 31.03.2015)
- 2. Мозгалева П. И., Гуляева К. В., Замятина О. М. Информационные технологии для оценки компетенций и организации проектной деятельности при подготовке технических специалистов. // Информатизация образования и науки. 2013. №4. С. 30-46.
- 3. Трансформатор Тесла // Википедия свободная энциклопедия. Электронный ресурс. URL: https://ru.wikipedia.org/wiki/Трансформатор_Тесла (Дата обращения: 31.03.2015)

Основные направления и результаты деятельности молодёжной организации МГГУ им. М.А.Шолохова «Студенческий Центр Ресурсосбережения»

Панфилов И.А., Ерошенко В.И., Панченко В.А. panfilov-i@mail.ru; ve07@yandex.ru; pancheska@mail.ru

ФГБОУ ВПО "Московский государственный гуманитарный университет имени М.А.Шолохова"

Стратегической целью государственной энергетической политики в сфере повышения энергетической эффективности является максимально рациональное использование энергетических ресурсов на основе обеспечения заинтересованности их потребителей в энергосбережении, повышении собственной энергетической эффективности и инвестировании в эту сферу [6].

Согласно данным, приведенным в Энергетической стратегии России до 2020 г., потенциал энергосбережения в нашей стране оценивается в 360-430 млн. тонн условного топлива. Около трети этого потенциала сосредоточена в ТЭК, еще треть – в сфере промышленности и строительства, около четверти – в ЖКХ. На долю остальных отраслей экономики приходится около 10% потенциала энергосбережения [1].

Для обеспечения устойчивого процесса повышения эффективности энергопотребления в секторах российской экономики необходимо реализовывать типовые энергосберегающие проекты, активизировать деятельность хозяйствующих