2. Могиленко А., Павлюченко Д. Энергосбережение и энергоэффективность: важные аспекты мониторинга и анализа (статья). 2011 г.

TouchSpace – новый подход к управлению компьютером

Горохова Е.С., Стучков А.В., Волшин М.Е., Солопченко С.А. GorokhovaES@mail.ru

Национальный Исследовательский Томский Политехнический Университет

В настоящее время огромное количество людей по всему миру не могут представить свою жизнь без компьютера. Одни используют компьютер для работы и сложных вычислений, другие – для развлечений и отдыха.

Однако наиболее распространенная компьютерная мышь обладает рядом недостатков.

Во-первых, использование мыши в дороге, на диване или на природе затруднительно из-за ограниченности или неровности поверхности. Во-вторых, лишние манипуляции по переносу руки от клавиатуры до мыши и обратно в сумме отнимают немало времени при работе с компьютером.

Для решения изложенных выше проблем была произведена модернизация компьютерной мыши. В результате нами были разработаны два устройства – TouchSide и TouchSpace.

TouchSide

Первое устройство – TouchSide, представляет собой компактный манипулятор, который надевается на палец и управляется за счет движения его по поверхности (рисунок 1).

Рис. 1. Внешний вид устройства TouchSide

Однако первая разработка не смогла полностью заменить компьютерную мышь, а лишь помогла решить проблему, связанную с тратой времени на перенос руки от клавиатуры до мыши и обратно.

В устройстве TouchSide не удалось реализовать возможность нажатия правой кнопки мыши, а также отсутствовала функция прокрутки экрана (скролл). Узким местом TouchSide был и размер корпуса, который не смог вместить необходимые детали для реализации всех функций присущих обычным компьютерным мышам.

Более того, TouchSide мало отличался от стандартных устройств ввода, он также как и другие устройства был тесно «привязан» к поверхности, что лишало его какойто «изюминки».

В результате мониторинга рынка были обнаружены другие манипуляторы для работы с компьютером. Все они имели некоторые недостатки. Так, например, устройство SkyMouse [1] (состоит из наперстков-датчиков) требует, чтобы

манипуляции наперстками происходили перед специальной камерой, что сильно ограничивает мобильность устройства.

TouchSpace

После сборки и тестирования TouchSide, а также анализа в сети Интернет различных устройств, наша команда пришла к идее избавить устройство ввода от «привязки» к поверхности. Результатом такой идеи стала концепция устройства под названием TouchSpace.

TouchSpace — манипулятор, позволяющий позиционировать курсор на экране компьютера путем простого перемещения рук в пространстве. Устройство обеспечит еще большую свободу действий и расширенную функциональность по сравнению с TouchSide и обычной компьютерной мышью. Внешний вид прототипа устройства представлен на рисунке 2.

Рис. 2. Внешний вид TouchSpace

Описание технической части TouchSpace

Управление курсором будет производиться за счет использования трёх маленьких датчиков поворота и перемещения.

TouchSpace состоит из двух модулей.

Первый модуль — три маленьких корпуса («наперстка»), предназначенных для пальцев рук.

Второй модуль – небольшой корпус, крепящийся на предплечье руки.

Для каждого из модулей были спроектированы платы с использованием САПР DipTrace. Изготовление плат планируется осуществлять методом травления [2]. Элементы корпусов устройства напечатаны с использованием 3D принтера.

Каждый «наперсток» содержит датчик, передающий сведения о положении пальца и угле поворота от начального положения. Размер датчика - 4мм х 4мм х 1мм. (рисунок 3).

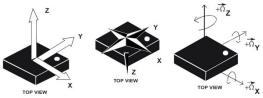


Рис. 3. Возможности датчика

Сигналы от датчика передаются на микроконтроллер, размещенный во втором модуле. В дополнение к микроконтроллеру, модуль будет содержать батарею, кнопку включения и выключения, miniUSB-порт для зарядки и Bluetooth модуль.

Принцип действия устройства

Контроллер получает координаты положения датчика и передает эту информацию на персональный компьютер, где координаты положения руки сравниваются со средненулевыми координатами. В результате их вычитания курсор на экране смещается согласно изменению положения руки пользователя.

Прототип TouchSpace на отладочной плате

В настоящее время на отладочной плате создан рабочий прототип устройства, представленный на рисунке 4.



Рис. 4. Реализация TouchSpace на отладочной плате

Для функционирования прототипа TouchSpace, была написана программа на C++, позволяющая обрабатывать данные с микроконтроллера и перемещать курсор по экрану.

Поступающий сигнал сильно зашумлен, что делает использование неудобным. Поэтому в работе используется фильтр Калмана для фильтрации шумов. На рисунке 5 отражена зависимость координаты Y от времени с применением фильтрации.

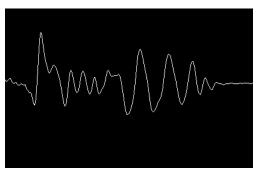


Рис. 5. График зависимости координаты Y от времени с применением фильтра Калмана

В результате курсор на экране перемещается плавно, что позволяет с комфортом управлять компьютером.

Область применения

Разрабатываемое устройство TouchSpace найдет широкое применение среди молодого поколения, не боящегося начать использовать что-то принципиально новое. Кроме того, устройство будет интересно любителям и разработчикам компьютерных игр, так как управление жестами подразумевает более широкий функционал манипулятора, по сравнению с аналогами.

Заключение

К лету 2015 года планируется собрать полностью функционирующий образец устройства, способный обрабатывать различные жесты пользователя, вызывающие

такие важные события как клики левой и правой кнопок мыши, масштабирование и перемещение объектов на экране, сворачивание окон и другое.

Обучение устройства различным жестам позволит сделать работу с компьютером простой и непринужденной.

Дизайн и изготовление корпуса для TouchSpace также является не менее важным вопросом, так как внешний вид устройства является визитной карточкой продукта.

В связи с этим необходимо продолжить работы по улучшению точности позиционирования курсора на экране, а также начать обучение устройства различным жестам.

Список литературы:

- 1. SkyMouse. Электронный ресурс. URL: https://www.kickstarter.com/projects/eephrati/skymouse (Дата обращения 20.03.2015);
- 2. Замятина О. М., Мозгалева П. И., Лычаева М. В. Проектно-ориентированное обучение в системе элитного технического образования в ТПУ // В сборнике: Уровневая подготовка специалистов: государственные и международные стандарты инженерного образования: сборник трудов научно-методической конференции. Томск: Изд-во ТПУ. 2013. С. 160-163.
- 3. Изготовление печатных плат. Электронный ресурс. URL: http://cxem.net/master/11.php (Дата обращения: 12.12.2014).

iFIND

Санжиев Ч. Б. gikipiki19@gmail.com

Научный руководитель: Мозгалева П.И., ассистент кафедры ОСУ Института кибернетики ТПУ

Ни для кого не секрет, что студенческая жизнь протекает в весьма неспокойном темпе: постоянные «перебежки» с пары на пару, с корпуса в корпус, мимолётные забеги в общежитие, чтобы перекусить или просто «за сменкой».

А когда наступает момент выходить на пару, резко замечаешь, что чего-то не хватает в твоём кармане, например, пропуска в общежитие! Или мобильного телефона! Или часов! И тут начинается главная проблема: трата драгоценного времени на поиск утерянного предмета, да и не факт, что вы его ещё и найдёте.

С искателем «iFIND» вы без проблем зафиксируете местоположение вашей вещи!

Принцип достаточно прост: вы имеете две составляющие данного устройства – пульт управления, и, собственно, сам искатель, то есть передатчик и приёмник радиосигнала. При потере вашей вещи, на которую вы заранее закрепили искатель (у Вас есть тенденция терять именно эту вещь), вы задействуете пульт, который передаст сигнал искателю, побудив его издавать звук. Вы реагируете на источник шума и без проблем обнаруживаете предмет, скажем, за прикроватной тумбочкой. И нервы сэкономили и на пару не опоздали.