Характеристика жидких продуктов термического растворения горючего сланца Чим-Лоптюгской площади бензолом в сверхкритических условиях

Я.Ю. Мельников¹ Научный руководитель - к.х.н. Е.Ю. Коваленко² ¹Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30,

²Институт химии нефти Сибирского отделения Российской академии наук 634021, Россия, г. Томск, пр. Академический, 4, azot@ipc.tsc.ru

Россия занимает одно из ведущих мест в мире по запасам горючих сланцев (ГС) [1]. Одним из эффективных методов их переработки может быть сверхкритическая флюидная технология, использование которой позволяет получать сырье, являющиеся основой для топливных и химических продуктов [2].

Цель работы – изучение состава жидких продуктов (пиролизат – П) термического растворения образца ГС [образец сланца любезно предоставлен Бурцевым И.Н. (Институт геологии Коми НЦ УрО РАН, г. Сыктывкар)] Чим-Лоптюгской площади Яренгского сланценосного района Тимано-Североуральского региона в среде бензола при сверхкритических условиях. Процесс осуществляли [процесс проводили в лаборатории научных основ технологий обогащения угля Института угля СО РАН, г. Кемерово, под руководством д.х.н. Патракова Ю.Ф.] на лабораторной полупроточной установке в среде бензола при давлении 15 атм., с отбором экстракта при температуре 300°C (П-300). В условиях эксперимента термическое разложения органического вещества (ОВ) незначительно. Происходит преимущественно извлечение растворимых в бензоле веществ, адсорбируемых в полимерной матрице ОВ [2]. Увеличение общей степени конверсии в жидкие продукты идет за счет повышения в составе экстракта доли высокомолекулярных компонентов (асфальтенов и смол), не подвергнутых вторичной термической деструкции. Согласно данным таблицы, в составе П-300 на долю смолисто-асфальтеновых веществ приходится 90,7%. Преобладают асфальтены. По сравнению со смолами они характеризуются более высокими значениями средней молекулярной массы и содержанием гетероатомов. Атомное соотношение $H/C_{_{a\tau}}$ для асфальтенов ниже, чем для смол, что свидетельствует о более высокой степени ароматичности их молекул.

По данным структурно-группового анализа [3] средние молекулы асфальтенов содержат 34 углеродных атомов (С), которые входят в состав ароматических ($C_a = 17,5$) и парафиновых ($C_n = 16,5$) фрагментов.

Ароматические атомы углерода образуют трициклические структуры, ($K_{_0}=K_{_a}=2,6$). Общее число углеродных атомов в средних молекулах смол меньше (C=18), и распределяются они между ароматическими ($C_{_a}=7,2$), нафтеновыми ($C_{_H}=1,5$) и парафиновыми ($C_{_n}=9,7$) фрагментами. Ароматические и нафтеновые атомы углерода образуют бициклические структуры ($K_{_0}=K_{_a}+K_{_H}=2,1$).

Содержание масел в исследуемом П-300 не значительно (табл.). По данным хроматомасс-спектрометрического исследования [4] среди масляных компонентов присутствуют н-алканы состава C_{14} – C_{35} с преобладанием четных гомологов в низкомолекулярной области (н- C_{14} , н- C_{16} , н- C_{18} и н- C_{20}), н-алкилбензолы с длиной алкильной цепи от C_{10} до C_{21} с максимумом распределения на C_{16} – C_{19} , а так же C_{10} – C_{16} н-алкилтиофены, C_{3} – C_{5} алкилбензотиофены и незамещенный дибензотиофен. Большую часть идентифицированных сернистых соединений составляют алкилированные тиофены. (C_{3} – C_{4})-бензотиофены представлены структурами только с метильными заместителями, C_{5} -бензотиофены – метили этилзамещенными структурами.

Образец	Вы- ход, % мас.	Мм а.е.м.	Содержание, % мас.					
			С	Н	N	S	Ор	H/C _{at}
масла	9,3	-	-	-	_	_	_	-
смолы	35,9	306	72,03	8,63	0,42	8,84	10,08	1,44
асфальтены	54,8	658	62,06	6,56	1,08	11,14	19,16	1,27

Таблица 1. Характеристика компонентов пиролизата

Полученные результаты расширяют представления о составе жидких продуктов, образующихся из ОВ горючих сланцев при термическом растворении бензолом при сверхкритических условиях, и вносят вклад в накопление научных данных, являющихся основой для создания эффективных способов переработки твердых горючих ископаемых.

Список литературы

- 1. Зеленин Н.И., Озеров И.М. Справочник по горючим сланцам.— Л.: Недра, 1983.— 248 с.
- 2. Патраков Ю.Ф., Фёдорова Н.И., Павлуша Е.С. // ХТТ, 2009. №4. С.40—43.
- Камьянов В.Ф., Большаков Г. Ф. // Нефтехимия, 1984.— Т.24.— №4.— С.450—459.
- Сергун В.П., Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С. // Нефтехимия, 2014. — Т.52. — №2. — С.83—87.