Результаты комплексной физико-химической обработки высокопарафинистой нефти

Н.Н. Ядревская¹

Научные руководители – к.х.н., доцент Н.В. Ушева¹; к.х.н. Ю.В. Лоскутова²

¹Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30

²Институт химии нефти Сибирского отделения Российской академии наук 634021, Россия, г. Томск, пр. Академический, 4, reoloil@ipc.tsc.ru

Внедрение новых высокоэффективных энергосберегающих технологий, используемых при добыче и транспорте проблемных нефтей, тесно связано с изучением особенностей поведения таких нефтей при воздействии внешних факторов в условиях пониженных температур.

В работе исследовано влияние присадок комплексного действия и виброакустического воздействия на вязкостно-температурные и энергетические характеристики, свойства дисперсной фазы высокопарафинистой высокозастывающей нефти Ондатрового месторождения (Томская область). Нефть является легкой, имеет низкую температуру начала кипения (33 °C), в ней отсутствуют асфальтены и содержится порядка 1,5 % мас. смол. Однако за счет повышенного содержания парафиновых углеводородов (6 % мас.) она характеризуется высокими значениями вязкости в области отрицательных температур и повышенной температурой застывания.

В нефть добавляли 0,03 % мас. присадок Difron3004 (D04) и Flexoil 1470, обладающими как депрессорными, диспергирующими, так и ингибирующими парафинообразование свойствами. Виброакустическую обработку (ВО) проводили на лабораторном вибраторе в течение 1 мин после охлаждения до $0\,^{\circ}$ С и термостатирования при данной температуре в течение 1 ч.

Если обработка комплексной присадкой Flexoil 1470 приводит к увеличению как температуры помутнения Тп и кристаллизации Тк, то добавка присадки D04, напротив, снижает Тп и Тк на $2-3\,^{\circ}$ C.

Максимальный депрессорный эффект был получен при совместном использовании ВО и присадки D04: температуры фазовых состояний (Тп и Тк) и предел текучести обработанной нефти сдвигается в низкотемпературную область на $5-6\,^{\circ}\mathrm{C}$, а динамическая вязкость, например, при температуре $10\,^{\circ}\mathrm{C}$ понижается более чем в $10\,$ раз.

По вязкостно-температурным зависимостям была рассчитана энергия активации вязкого течения $E^a_{\mbox{\tiny вт}}$ обработанных в различных условиях образцов нефти (табл.). После BO или ввода присадок происходит

Таблица 1. Физик	ко-химические и энергетич	еские параметры нефти
------------------	---------------------------	-----------------------

нефть	Tπ, °C	Тсп, °С	Тз, °С	Е _{вт} , кДж/моль	W, кДж
исходный	18,5	16,9	-5,8	91,4	0,79
ВО	16,1	14,3	-0,2	32,8	0,30
D04	16,2	14,5	-11,2	47,3	0,22
BO + D04	12,8	11,0	-24,6	38,5	0,04
Flexoil1470	19,7	19,2	-6,0	37,8	1,0
BO + Flexoil1470	14,2	15,6	-2,3	29,8	1,94

понижение $E^a_{_{\mathrm{RT}}}$. Максимальное же снижение энергии активационных процессов наблюдается также после комплексной обработки с добавкой присадки Flexoil 1470.

По площадям петлей гистерезиса прямого и обратного хода кривых зависимости напряжения сдвига от скорости сдвига рассчитаны величины внутренней энергии разрушения дисперсной системы W. После ВО или обработки нефти присадкой D04 скорости разрушения и восстановления тиксотропной структуры выравниваются, а значения энергии W при этом снижаются. Комплексная физико-химическая обработка охлажденной нефти с последующим вводом в присадки D04 приводит к резкому уменьшению размеров петли гистерезиса и сопровождается 20-ти кратным снижением внутренней энергии системы.

Добавка в нефть присадки D04 на 6°C снижает температуру застывания Тз, а акустическое воздействие приводит к ее увеличению. Введение в охлажденную и обработанную полем нефть присадки D04, напротив, существенно улучшает депрессорный эффект, понижая температуру застывания на 20 °C.

Таким образом, обработка только виброакустическим полем высокопарафинистой нефти Ондатрового месторождения при температуре, близкой к температуре застывания, приводит к увеличению температур, характеризующих фазовое состояние (Тп, Тк и Тз). Комплексная физико-химическая обработка охлажденной нефти приводит к практически полному разрушению тиксотропной структуры, что сопровождается резким снижением вязкостно-температурных характеристик, а также уменьшением энергетических параметров.