Полученные мембраны были испытаны в тестовой ячейке водородного топливного элемента ElectroChem (США) при температуре 25 °C с подачей увлажненного водорода и воздуха. Данные образцы демонстрируют более высокие электрические характеристики по сравнению с коммерческой мембраной Nafion (ток короткого замыкания составляет 350–450 и 307 мА • см⁻¹, соответственно).

Список литературы

- Hickner M.A., Ghassemi H., Kim Yu S., Einsla B.R., McGrath J.E. Alternative polymer systems for proton exchange membranes (PEMs) // Chem. Rev., 2004.– Vol.104.– P.4587–4612.
- 2. Ярославцев А.Б. Перфторированные ионообменные мембраны // Высокомолекулярные соединения. А., 2013. Т.55. №11. С.1367—1392.
- Lebedeva O.V., Pozhidaev Yu.N., Shaglaeva N.S., Pozdnyakov A.S., Bochkareva S.S. Polyelectrolytes Based on Nitrogenous Bases // Theoretical Foundations of Chemical Engineering, 2010. – Vol.44. – №5. – P.786–790.

Многослойные функциональные биоматериалы на основе полимолочной кислоты

К.С. Станкевич, Н.В. Даниленко Научные руководители – д.х.н., ведущий научный сотрудник В.Д. Филимонов; к.ф.-м.н., доцент С.И. Твердохлебов

> Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, tpu@tpu.ru

Введение

Создание композиционных биосовместимых материалов для регенеративной медицины представляет собой актуальную междисциплинарную задачу. Ключевыми свойствами подобных материалов являются: контролируемая скорость деградации в организме, свойства их поверхности (топография, гидрофильность/гидрофобность, наличие клеточных доменов), способность выступать в роли системы адресной доставки лекарств [1–3]. Целью данной работы являлось получение многослойных функциональных биоматериалов на основе биодеградируемого полимера – полимолочной кислоты (ПМК).

Материалы и методы

С использованием предложенного нами ранее метода модифицирования поверхности [4] были получены следующие материалы: плен-

ки из ПМК, покрытые желатином (ПМК-желатин), пленки из ПМК, покрытые полиакриловой кислотой (ПАА) (ПМК-ПАА), пленки из ПМК, покрытые смесью желатина и ПАА (ПМК-желатин-ПАА). На ПМК-желатин осуществляли ковалентную прививку бифункциональных кросс-линкеров через реакции с арендиазоний трифлатами. Пленки ПМК-ПАА обрабатывали тионилхлоридом для последующего ковалентного присоединения биологически-активных/флуоресцирующих аминов. Пленки ПМК-желатин-ПАА последовательно подвергали указанным видам обработки для получения материалов, поверхность которых содержит различные функциональные зоны. Свойства полученных гибридных биоматериалов исследовали с помощью УФ-, флуоресцентной, ИК-спектроскопии, РФлА, ТГА/ДТА/ДСК, оптической микроскопии. Смачиваемость поверхности полученных материалов определяли путем измерения краевого угла смачивания методом «сидячей» капли.

Результаты и обсуждение

Успешное нанесение желатина на поверхность ПМК подтверждается результатами ИК-спектроскопии, на спектре поверхности материала ПМК-желатин наблюдаются характеристические полосы поглощения желатина: $3300~{\rm cm^{-1}}$ (vNH), полосы амид I, амид II. Было показано, что при нанесении желатина на поверхность ПМК краевой угол смачивания водой уменьшается с 75° до 15° , то есть поверхность полученных материалов гидрофильная. В качестве бифункциональных кросс-линкеров использовали п-иод- и 2,4,6-трииодарендиазоний трифлаты. По результатам РФлА на спектре модифицированных материалов наблюдали два пика, соответствующих атому йода (28,6 КэВ и 32 КэВ).

Эффективность модифицирования ПМК-ПАА оценивали путем прививки флуоресцентного амина 5-амино-2-фенил-1,3-бензоксазола или иодпроизводных аминокислот на поверхность материала. На полученных спектрах флуоресценции материалов наблюдали максимум (480 нм), соответствующий ацилированному 5-амино-2-фенил-1,3-бензоксазолу. При введении п-иодфенилаланина по результатам РФлА на спектре модифицированных материалов наблюдали два пика, соответствующих атому йода (28,6 КэВ и 32 КэВ).

Для материалов из ПМК, модифицированных смесью желатина и ПАА, применяли комбинацию описанных выше подходов оценки результатов модифицирования.

Выводы

По результатам проделанной работы были получены многослойные функциональные биоматериалы на основе полимолочной кислоты с гидрофильной поверхностью, содержащие на поверхности биологически активные амины, флуоресцирующие амины. Таким образом показана возможность получения материалов с определенными свойствами поверхности, которые могут также быть носителями биологически активных соединений и использоваться в качестве систем адресной доставки.

Список литературы

- Athanasiou K.A., Niederauer G.G., Agrawal C.M. // Biomaterials, 1996.– Vol.17.– P.93–102.
- Rasal R.M., Janorkar A.V., Hirt D.E. // Prog. Polym. Sci., 2010.– Vol.35.– P.338–356.
- 3. Anderson J.M. // Annu. Rev. Mater. Res., 2001. Vol.31. P.81–110.
- Stankevich K.S., Gudima A., Filimonov V.D., Klüter H., Mamontova E.M., Tverdokhlebov S.I., Kzhyshkowska J. Mat. Sci. Eng. C., 2015.– Vol.51.– P.117–126.

Растворимость олигомера молочной кислоты

Н.Г. Титова, В.Н. Глотова, Т.Н. Иженбина Научный руководитель – к.х.н, доцент В.Т. Новиков

Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, ngt1@bk.ru

Производство полимеров в настоящее время растёт очень высокими темпами, однако такой рост вызывает тревогу, связанную с загрязнением окружающей среды отходами полимерного мусора. Обезвреживание серийного пластикового мусора сжиганием, а также пиролизом отходов пластмасс, не является решением экологической проблемы. Рециклинг, т.е. повторная переработка — экологичнее, однако для этого процесса требуются немалые энергетические, трудовые затраты и налаженный сбор качественных отходов. Поэтому в последнее десятилетие получили распространение биоразлагаемые полимеры, которые способны компостироваться в результате естественных природных (микробиологических и биохимических) процессов.

Наибольший интерес представляют полимеры на основе молочной кислоты (МК)-полилактиды, поскольку полилактид способен к гидролитическому разложению до углекислого газа и воды. Данные виды полимеров биосовместимы с организмом человека, не токсичны, что