- 3. Копылов Ю.В. «Расчёт магнитной цепи постоянного тока». Учебное пособие. Томск. Изд. ТПИ. 1985
- 4. Буль Б. К. Основы теории и расчёта магнитных цепей. М.-Л., издательство Энергия, 1964
- 5. Чунихин А. А. Электрические аппараты (общий курс). Учебник для энергетических и электротехнических институтов и факультетов. Изд. 2-е, перераб. и доп. М.: Энергия, 1975.
- 6. http://matlab.ru
- 7. http://elcut.ru

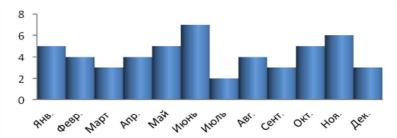
МОДЕЛИРОВАНИЕ АЛГОРИТМА ДЛЯ ВЫЧИСЛЕНИЯ НАДЁЖНОСТИ ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ТРОЛЛЕЙБУСА

Коробков А. А.

Национальный исследовательский Томский политехнический университет, г. Томск

Для приведения в движение троллейбуса необходим тяговый электродвигатель (ТЭД). Тяговый электродвигатель (или электродвигатели, если их несколько) приводит троллейбус в движение посредством передачи создаваемого им вращающего момента через специальные механизмы (тяговая передача) ведущим колесам, а также используется в процессе электродинамического или рекуперативного торможения. Таким образом, надежность троллейбуса непосредственно зависит от ТЭД. Моделирование эксплуатационной надежности ТЭД является важной частью расчета безотказной работы троллейбуса.

В данном случае объектом исследования является троллейбус марки AKCM - 321, который широко применяется во многих городах России и стран СНГ.


АКСМ-321 — белорусский низкопольный троллейбус большой вместимости для внутригородских пассажирских перевозок, выпускаемый серийно с 2001 года на Белкоммунмаше. Относится к третьему поколению троллейбусов, разработанных заводом. На АКСМ — 321 установлен асинхронный двигатель марки ДТА-1У1, мощностью 180кВт.

Основные неисправности двигателя приведены в таблице 1.

Таблица 1. Неисправности двигателя

The state of the s						
Отказавший узел	Вид отказов	Причина отказов				
Обмотка статора	Пробой изоляции Снижение сопротивления	Перегрев обмотки Проникновение влаги				
	изоляции внутрь двигателя					
Ротор	Задир ротора о статор	Износ подшипника				
Подшипник	Разрушение/заклинивание	Проникновение пыли и влаги				
	подшипника	Ошибки установки				

На рисунке 1 показана динамика выхода из строя тягового электродвигателя. Использовались данные по отказам двигателей в период с июня 2013 года по июнь 2014 года.

Рис. 1. Динамика выхода из строя тягового электродвигателя зависимости от времени гола

Суммарное количество отказов за данный период равняется 43.

В таблице 2 приведены данные отказов асинхронных двигателей в период с июнь 2013 года по июнь 2014 года.

Таблица 2. Данные отказов асинхронных двигателей

Причина отказа	Количество отказов			
Неисправность подшипников	30			
Неисправность обмотки статора	9			
Неисправность ротора	4			
Всего	43			

Произведем расчеты надежности троллейбусов:

Определим статистическую вероятность отказов за весь период по формуле (1):

$$P^* = \frac{m}{n}$$
 , где m-число отказов узла n- общее число отказов

Статическая вероятность отказов подшипников:

$$P*_{II} = \frac{m}{n} = \frac{30}{43} = 0.697 \tag{2}$$

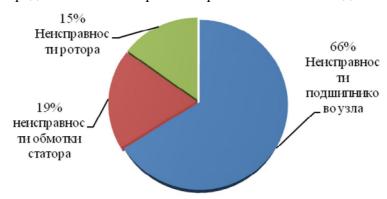
Статическая вероятность отказов обмотки статора:

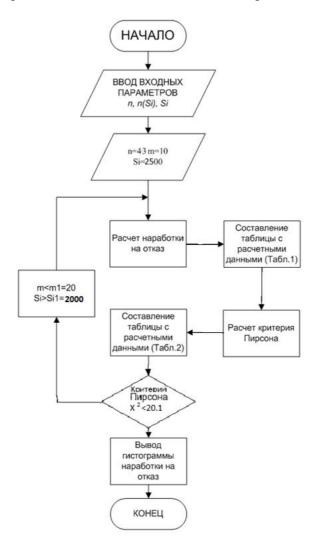
$$P*_{OC} = \frac{m}{n} = \frac{9}{43} = 0.209 \tag{3}$$

Статическая вероятность отказов из-за неисправностей ротора:

$$P_{P}^{*} = \frac{m}{n} = \frac{4}{43} = 0.093 \tag{4}$$

На рисунок 2 представлена гистограмма вероятностей отказов двигателей.




Рис. 2. Отказы основных узлов тягового электродвигателя ДТА 1У1

В математической статистике часто возникает задача определения на основе имеющихся статистических данных закона распределения случайной величины. В этом случае выдвигается гипотеза о математической модели распределения. Известные методы позволяют подтвердить соответствие имеющегося статистического материала выдвинутой гипотезе о законе распределения.

- I. Исходные параметры:
- 1. Абсолютная частота отказов количество наработок на отказ (n) отнесенное к интервалу
 - 2. Границы интервалов км.
 - 3. Количество интервалов т.
 - II. Выходные параметры:
 - 1. Вероятность безотказной работы
 - 2. Интенсивность отказов
 - III. Ограничения: Критерий Пирсона

Тяговый двигатель является самым важным элементом в троллейбусе. Анализ надежности необходим для разработки и уточнения методик расчета электрических машин, совершенствование технологии изготовления, создания и улучшения систем защиты и правил технической эксплуатации.

Алгоритм моделирования надежности тягового электродвигателя, троллейбуса.

Случайной величиной является время до отказа (наработка на отказ). По данным, полученным в ходе практики, произведем математическую обработку. На данном этапе рассчитаем интенсивность отказов.

Количество случайных чисел (наработок на отказ) n = 10. Максимальный член ряда smax = 25346км. Минимальный член ряда smin = 573 км.

Весь диапазон значений случайной величины - наработок на отказ разбивается на интервалы. Для удобства расчетов интервалы целесообразно принимать равными. Определяем величину интервала по формуле:

$$\Delta s = \frac{s_{MAX} - s_{MIN}}{m} = \frac{25346 - 573}{10} = 2477,3 \,\text{км} \tag{5}$$

В нашем случае для получения интервалов равной длины принимаем $\Delta s = 2500 \, \kappa M$, т.к. при этом количество интервалов m=10.

Расчет проведем по одному интервалу, для остальных расчет аналогичен. Результаты сведем в таблицу 3.

Границы интервалов Δs_i , км	Абсолютная частота отказов $n(\Delta s_i)$	Относительная частота отказов $\frac{n(\Delta s_i)}{n \cdot \Delta s}$	Вероятность отказа $Q = \frac{n(\Delta s)}{n}$	Вероятность безотказной работы $P(s) = 1 - \frac{n(\Delta s)}{n}$	Интенсивность отказов $\lambda = \frac{n(\Delta s_i)}{\Delta s_{CPE\mathcal{I}} \cdot \Delta s}$
0-2500	3	0,000025	0,069767	0,930233	2,58065E-05
2500-5000	2	1,66667E-05	0,104167	0,895833	1,75824E-05
5000-7500	3	0,000025	0,166667	0,833333	2,72727E-05
7500-10000	3	0,000025	0,229167	0,770833	2,82353E-05
10000-12500	4	3,33333E-05	0,3125	0,6875	3,95062E-05
12500-15000	4	3,33333E-05	0,395833	0,604167	4,15584E-05
15000-17500	5	4,16667E-05	0,5	0,5	5,55556E-05
17500-20000	5	4,16667E-05	0,604167	0,395833	5,97015E-05
20000-22500	5	4,16667E-05	0,708333	0,291667	6,45161E-05
22500-25000	9	0,000075	0,895833	0,104167	0,000135849

Таблица 3. Обработка статистических данных об отказах

Первому интервалу 0-2500 километров, соответствует 3 отказа, т.е. является абсолютной частотой отказов на данном интервале. Теперь можно рассчитывать относительную частоту отказов:

$$\frac{n(\Delta s_i)}{n \cdot \Delta s} = \frac{3}{10 \cdot 2500} = 0,000025,$$
 (6)

где n=8 – общее число экспериментальных точек.

Относительная частота является одновременно оценкой частоты отказов. Высота каждого прямоугольника соответствует относительной частоте отказов в интервале Δs_i .

Далее определяем вероятность отказа:

$$Q = \frac{n(\Delta s)}{n} = \frac{3}{10} = 0.3,$$
 (7)

где $n(\Delta s_i)$ суммарное число отказов к пройденному расстоянию s.

Накопленная частота всех интервалов должна быть равна единице, потому как получаются в результате последовательного сложения следующих одна за другой относительных частот.

Теперь можно определить вероятность безотказной работы:

$$P(s) = 1 - \frac{n(\Delta s)}{n} = 1 - \frac{1}{10} = 0.93$$
 (8)

Рассчитываем интенсивность отказов:

$$\lambda = \frac{n(\Delta s_i)}{\Delta s_{CPEJI} \cdot \Delta s} = \frac{3}{46, 5 \cdot 2500} = 0,0000258, \tag{9},$$

где Δs_{CPEJ} - среднее число исправно работающих машин в интервале Δs_i

По данным таблицы 3 строим гистограмму, рисунок 3.

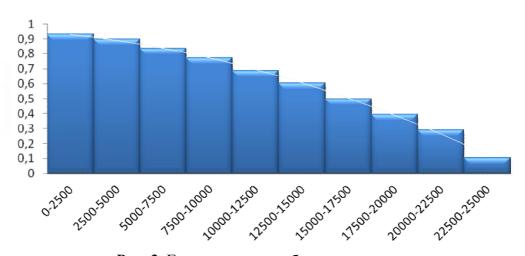


Рис. 3. Гистограмма наработки на отказ

Исходя из характера гистограммы, можно предположить, что исследуемая величина распределена по экспоненциальному закону.

Таким образом, в результате проделанного расчета получены фактические значения наработки на отказ подшипникового узла, а также построена гистограмма наработок на отказ. В данной работе был разработан общий алгоритм моделирования надежности тягового электродвигателя троллейбуса. Согласно этому алгоритму, возможно смоделировать надежность определенного узла троллейбуса, т.е. для надежности узлов в троллейбусе может использоваться общий алгоритм, разработанный в данной работе.

ЛИТЕРАТУРА

- 1. Захарченко П. И., Ширнин И.Г., Ванеев Б. Н., Гостищев В. М. Обеспечение надежности асинхронных двигателей// УкрHИИВЭ,-Донецk, 1998. 324 c.
- 2. Кузнецов Н. Л. Надежность электрических машин: учеб. пособие для вузов / Н. Л. Кузнецов М.: Издательский дом МЭИ, 2006. -432с.
- 3. Испытания, эксплуатация и ремонт электрических машин : учебник / Н.Ф. Котеленец, Н. А. Акимова, М. В. Антонов ; Под ред. Н. Ф. Котеленца.М. : Академия, 2003. 384 с.