УДК 536.46

ИССЛЕДОВАНИЕ ПРОЦЕССОВ СТРУКТУРООБРАЗОВАНИЯ И САМОРАЗОГРЕВА В БИНАРНОЙ ПОРОШКОВОЙ СМЕСИ ТІ-АІ В РЕЖИМЕ СТАТИЧЕСКОГО ТЕПЛОВОГО ВЗРЫВА НА ОСНОВЕ ДИАГРАММЫ СОСТОЯНИЯ

К.Б. Кошелев

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул E-mail: koshelevkb@land.ru

На основе равновесной диаграммы состояния системы Ti-Al разработана математическая модель процессов фазообразования в режиме статического теплового взрыва порошковой смеси при температурах, превышающих температуру плавления легкоплавкого компонента. Получены термограммы процесса саморазогрева, исследована динамика процессов структурообразования с использованием методов численного моделирования для стехиометрии соединений TiAl₃ и TiAl. Показано, что результаты расчетов обнаруживают удовлетворительное качественное согласование с экспериментальными данными.

Введение

Интерметаллидные соединения на основе титана и алюминия имеют широкое применение в различных отраслях промышленности, прежде всего в авиастроении, судостроении. Экспериментальному изучению процессов структурообразования в указанной системе, посвящено значительное количество публикаций, при этом исследования проводились в основном на диффузионных парах, например [1]. В исследовании [2] методами математического моделирования проведен расчет динамики разогрева и процессов структурообразования в системе Ni-Al на основе диаграммы состояния. В работе [3] экспериментально установлено, что в бинарной порошковой смеси Ti-Al эквиатомного состава, при саморазогреве, теплофизические условия реализации синтеза могут влиять на фазовый состав конечного продукта, однако работа является чисто эмпирической.

Целью настоящего исследования, является моделирование процессов структурообразования в системе Ti-Al при саморазогреве в режиме теплового взрыва, и сопоставление полученных результатов расчета с данными эксперимента.

Постановка задачи

Используется равновесная диаграмма системы Ti-Al [4]. Взаимодействие в системе начинается с плавления алюминия. Далее характер процесса фазообразования зависит от соотношения компонентов смеси. Для состава Ti-66,3 мас. % Al, отвечающему стехиометрии соединения $TiAl_3$, стадия образования соответствующего интерметаллидного соединения является доминирующей. Процесс роста слоя продолжается до полного исчерпания титанового материала, при этом γ -фаза (TiAl) и α_2 -фаза (Ti_3Al), находящиеся в равновесии с фазой $TiAl_3$ на равновесной диаграмме, в конечном продукте не наблюдаются.

Для состава Ti - 39,6 мас. % Al механизм структурообразования иной. На первой стадии, как и в предыдущем случае, синтезируется соединение Ti-Al₃, образование которого и обуславливает бы-

стрый рост температуры до максимального значения, соответствующего исчерпанию свободного алюминия. Одновременно с этим растут слои интерметаллидных соединений TiAl и Ti_3Al . Результатом синтеза является продукт с преимущественным содержанием фазы TiAl и содержанием небольшого количества фазы Ti_3Al , следовательно, в процессе синтеза происходят параллельные реакции образования и перекристаллизации фаз. Таким образом, конечный продукт, при данном соотношении компонентов, является двухфазным. Максимальные температуры горения не превышали $1200\,^{\circ}$ C.

При математической постановке задачи, использовались представления, развитые в известных работах [2, 5, 6]. В задаче рассматривается динамика саморазогрева порошковой смеси Ti-Al, находящейся в реакторе объема V, с поверхностью теплоотдачи S с эффективным коэффициентом теплоотдачи α . Задача рассматривалась в термически безградиентной постановке.

Предполагалось, что саморазогрев происходит в статических условиях, при фиксированной на протяжении всего процесса синтеза, температуре стенки реактора, которая выше температуры плавления легкоплавкого компонента. За время плавления и достижения смесью температуры стенки T_0 в системе не происходит образования фаз, легкоплавкий компонент полностью находится в жидкой фазе. Рассматривалось соотношение компонентов, соответствующее стехиометрии фаз $TiAl_3$ и $TiAl_3$ в соответствии с этим рассчитывался размер реакционной ячейки по известной формуле [2, 6]

$$R_e = r_{\text{Ti}} \left(1 + \frac{\mu_{\text{Al}} \nu_{\text{Al}} \rho_{\text{Ti}}}{\mu_{\text{Ti}} \nu_{\text{Ti}} \rho_{\text{Al}}} \right)^{\frac{1}{3}},$$

где $r_{\rm TI}$ — радиус частицы титана; $\mu_{\rm Al}$, $\mu_{\rm TI}$ — атомные массы титана и алюминия соответственно; $\upsilon_{\rm Al}$, $\upsilon_{\rm TI}$ — стехиометрические коэффициенты; $\rho_{\rm Al}$, $\rho_{\rm TI}$ — плотности.

Уравнение теплового баланса для порошковой системы с жидким алюминием:

$$C_V \frac{dT}{dt} = nW^+ - \alpha \frac{S}{V}(T - T_0), \quad t = 0, \quad T = T_0,$$
 (1)

где C_V — теплоемкость единицы объема смеси; n — число ячеек в единице объема; W^+ — скорость тепловыделения, которая определяется скоростью образования фаз, а также скоростью растворения. Как будет видно из дальнейшего, максимальные температуры синтеза не достигают температуры плавления фазы TiAl₃, что соответствует экспериментальным и расчетным данным [5, 7], по этой причине теплоотвод на плавление не рассматривался.

Выражение для скорости тепловыделения имеет вид:

$$W^{+} = Q_{1} \rho_{AI} \frac{dI_{1}}{dt} + Q_{2} \rho_{AI} \frac{dI_{2}}{dt} + Q_{3} \rho_{AI} \frac{dI_{3}}{dt} - -4\pi r_{1}^{2} \left(c_{I} \frac{dr_{1}}{dt} - D_{I} \frac{\partial c}{\partial r} \Big|_{r_{1}+0} \right) Q_{I} \rho_{AI},$$
 (2)

где Q_1 — тепловой эффект образования фазы TiAl₃; Q_2 — фазы TiAl, Q_3 — фазы Ti₃Al (на единицу массы алюминия); $r_1(t)$ — текущий радиус частицы в процессе фазообразования $(r_0 \le r_1 \le R_e)$; c_1 — концентрация алюминия, определяемая ликвидусной линией

на диаграмме (см. рис. 1);
$$D_l = D_{0l} \exp\left(-\frac{E_l}{RT}\right)$$

коэффициент диффузии в жидкой фазе (D_0 – предэкспонент; E_l — энергия активации); Q_l — тепловой эффект растворения. I_i — количество алюминия в фазах:

$$I_{1} = 4\pi \int_{r_{2}}^{r_{1}} c(r) r^{2} dr, \quad I_{2} = 4\pi \int_{r_{3}}^{r_{2}} c(r) r^{2} dr,$$

$$I_{3} = 4\pi \int_{r_{3}}^{r_{3}} c(r) r^{2} dr. \tag{3}$$

Система уравнений диффузии в областях:

$$egin{aligned} r_{_{\! 1}} < r < R_{_{\! e}}, & rac{\partial c}{\partial t} = D_{_{\! l}}(T) rac{1}{r^2} rac{\partial}{\partial r} r^2 rac{\partial c}{\partial r}, & r = r_{_{\! l+0}}, \ c = c_{_{\! l}}, & r = R_{_{\! e}}, & rac{\partial c}{\partial r} = 0, \end{aligned}$$
 (расплав),

$$r_2 < r < r_1, \quad \frac{\partial c}{\partial t} = D_1(T) \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial c}{\partial r}, \quad r = r_{1-0},$$

 $c = c_1, \quad r = r_{2+0}, \quad c = c_2,$ (TiAl₃),

$$r_3 < r < r_2, \quad \frac{\partial c}{\partial t} = D_2(T) \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial c}{\partial r}, \quad r = r_{2-0},$$

$$c = c_3, \quad r = r_{3+0}, \quad c = c_4, \quad \text{(TiAl)}, \quad (4$$

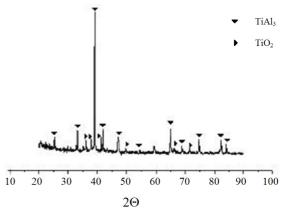
$$r_4 < r < r_3$$
, $\frac{\partial c}{\partial t} = D_3(T) \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial c}{\partial r}$, $r = r_{3-0}$, $c = c_5$, $r = r_{4+0}$, $c = c_6$, (Ti₃Al)

$$\begin{split} 0 < r < r_5, \quad & \frac{\partial c}{\partial t} = D_4 \, \frac{1}{r^2} \, \frac{\partial}{\partial r} \, r^2 \, \frac{\partial c}{\partial r}, \quad r = r_{4-0}, \\ c = c_7, \quad r = 0, \quad & \frac{\partial c}{\partial r} = 0, \qquad \text{(TB. pactbop)}. \end{split}$$

Все коэффициенты диффузии определяются аррениусовской зависимостью от температуры: $D_i = D_0 \exp(-E_i/RT)$.

Система уравнений движения границ фаз запишется в следующем виде:

$$(c_{2i-2} - c_{2i-1}) \frac{dr_i}{dt} =$$


$$= D_i(T) \frac{\partial c}{\partial r} \Big|_{r_i - 0} - D_{i-1}(T) \frac{\partial c}{\partial r} \Big|_{r_i + 0} \quad i = 1, 2, 3, 4.$$
 (5)

При расчете выбирались следующие значения: размер частиц титана r_0 =120 мкм, для стехиометрии TiAl, R_e =187,5 мкм, для стехиометрии TiAl, R_e =150 мкм. Расплав: Q_i =8,1·10³ кДж/кг, D_{0i} =8,3·10⁻⁸ м²/с, E_i =25 кДж/моль. Фаза TiAl; Q_i =7,2·10³ кДж/кг, D_{0i} =2·10⁻⁷ м²/с, E_i =105 кДж/моль, фаза TiAl: Q_2 =5,6·10³ кДж/кг, D_{02} =8,5·10⁻⁶ м²/с, E_2 =220 кДж/моль, фаза Ti₃Al: Q_3 =98,5 кДж/кг, D_{03} =2,4·10⁻⁵ м²/с, E_3 =230 кДж/моль, твердый раствор: D_{04} =1,6·10⁻⁷ м²/с, E_3 =99,3 кДж/моль. Тепловыделение от образования твердого раствора и теплота перекристаллизации α_2 -фазы в модели не учитывались.

Результаты расчета

Численный расчет системы (1)—(5) производился с использованием неявного конечно-разностного метода. На каждом шаге по времени проводились итерации по нелинейности до тех пор, пока максимальное изменение границы фаз между итерациями не превышало $10^{-7}R_e$. Кроме того, шаг по времени определялся с помощью эмпирической процедуры.

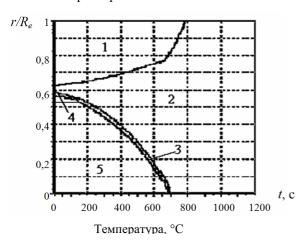

Экспериментальная методика проведения синтеза в режиме теплового взрыва в указанной системе описана в работах [8, 9]. При сравнении экспериментальных и расчетных данных помимо обычных проблем, связанных с естественными ограничениями математической модели, в данном случае главной является трудность экспериментального определения комплекса $\alpha = \alpha S/V$, BT/M^3 . Поэтому в представленной работе все сравнения носят качественный характер.

Рис. 1. Дифрактограмма продукта синтеза, проведенного в режиме теплового взрыва для стехиометрии соединения TiAl.

При соотношении компонентов, соответствующему соединению $TiAl_3$, результаты по расчету формирования конечного продукта синтеза (рис. 1, 2) хорошо согласуются между собой — в

обоих случаях доминирующей фазой по окончании процесса является $TiAl_3$ при любых комбинациях других параметров. Результат расчета не зависит от значения параметра α^* .

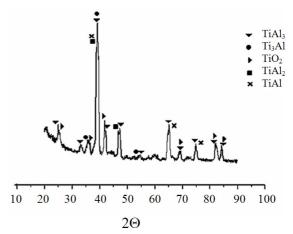
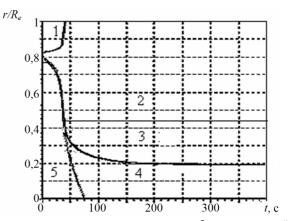


Рис. 2. Динамика процессов структурообразования в ячейке, рассчитанная по модели с момента окончания плавления при значениях параметров $\alpha = 4$ Вт/ M^3 , $T_0 = 950$ °C. Здесь: 1) область жидкого алюминия, 2) фаза TiAl $_3$, 3) фаза TiAl, 4) фаза Ti_3 Al, 5) α -твердый раствор


При заданных значениях параметров формирование конечного однофазного продукта происходит через 790 с. На рис. 3 представлены соответствующие экспериментальные и расчетные термограммы.

Из вида термограмм следует, что значения расчетных и экспериментальных данных по максимальной температуре обнаруживает хорошее количественное согласование, однако различие во временах индукции составляет порядка 50 %.

В системе стехиометрии TiAl и экспериментальные, и расчетные результаты показывают наличие многих фаз (рис. 4, 5).

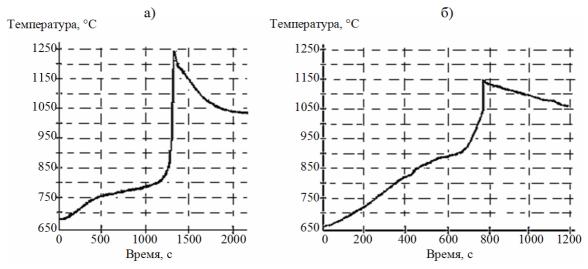


Рис. 4. Дифрактограмма конечного продукта синтеза стехиометрии соединения TiAl

Рис. 5. Динамика процессов структурообразования в ячейке, рассчитанная при значениях параметров α =50, T_0 =680 °C для стехиометрии соединения TiAl

Из вида термограмм (рис. 6) следует, что в этом случае различие в максимальных температурах составляет $2\,\%$, различие во временах индукции около $70\,\%$.

Рис. 3. Термограммы процесса теплового взрыва: а) экспериментальная, б) расчетная для стехиометрии соединения $TiAl_3$

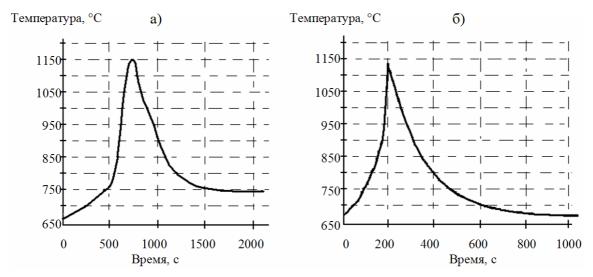


Рис. 6. Экспериментальная (а) и расчетная (б) термограммы процесса теплового взрыва для стехиометрии соединения TiAl

Существенное количественное различие во временах индукции, по-видимому, можно объяснить использованием упрощающего предположения об отсутствии фазообразования до момента достижения системой температуры стенки реактора. Что касается продуктов синтеза, то здесь имеет место полное качественное согласование результатов расчета и данных эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- Krai J., Ferdinandy M., Liska D., Diko P. Formation of TiAl₃ layer on titanium alloys // Material Sciens and Engineering. – 1991. – V. A140. – P. 479–485.
- Лапшин О.В., Овчаренко В.Е. Математическая модель высокотемпературного синтеза алюминида никеля Ni₃Al в режиме теплового взрыва порошковой смеси чистых элементов // Физика горения и взрыва. – 1996. – Т. 32. – № 3. – С. 68–76.
- Филимонов В.Ю., Евстигнеев В.В., Василенко С.Н. Влияние тепловых режимов самораспространяющегося высокотемпературного синтеза на структуру конечного продукта в системе Ti-Al // Перспективные материалы. – 2001. – № 5. – С. 70–73.
- Титановые сплавы. Металлография титановых сплавов / Е.А. Борисова, Г.А. Бочвар, М.Я. Брун и др.; под ред. С.Г. Глазунова и Б.А. Колачева (отв. ред.). М.: Металлургия, 1980. 464 с.
- Евстигнеев В.В., Вольпе Б.М., Милюкова И.В., Сайгутин Г.В. Интегральные технологии самораспространяющегося высокотемпературного синтеза. – М.: Высшая школа, 1996. – 274 с.

Таким образом, результаты расчетов по разработанной математической модели процессов структурообразования в системе Ti-Al качественно согласуются с экспериментальными данными. Дальнейшее развитие модели может привести и к количественному соответствию с реальными процессами, что позволит использовать ее для управления процессом фазообразования.

- Некрасов Е.А., Смоляков В.К., Максимов Ю.М. Математическая модель горения системы титан – углерод // Физика горения и взрыва. – 1981. – Т. 17. – № 5. – С. 63–73.
- 7. Итин В.И., Найбороденко Ю.С. Высокотемпературный синтез интерметаллических соединений. Томск: Изд-во Том. ун-та, 1989. 214 с.
- 8. Evstigneev V.V., Filimonov V.Y., Yakovlev V.I. The Peculiarities of a Structure Formation Process in a Ti-Al Heterogeneous System at Different Thermal Modes of Synthesis // International Journal of SHS. −2004. − V. 13. − № 3. − P. 209−219.
- Евстигнеев В.В., Филимонов В.Ю., Яковлев В.И. Особенности процессов структурообразования в бинарной порошковой смеси TiAl при различной продолжительности синтеза // Физика и химия обработки материалов. – 2006. – № 3. – С. 67–72.

Поступила 14.11.2006 г.