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Abstract. Ceramic sintering on the basis of Al2O3 activated by nanopowder additives Al2O3 

and Al has been studied. The given paper shows that adding nanopowder Al2O3 in the amount 

of up to 20 wt. % into the coarse powder -Al2O3 activates the sintering process and, as a 

result, leads to the increase in density and microhardness of sintered alumina ceramics. The 

study has revealed a significant effect of alumina ceramic density growth which is due to 

introducing the submicron powder TiO2 to the initial blends composition. 

1. Introduction 

The most widespread methods of obtaining strong alumina ceramics are powder techniques, i.е. 

various types of pressing and sintering modified as applied to ceramics. Nevertheless, the complexity 

and poor performance by hot and hot isostatic pressing techniques [1, 2] that make it possible to obtain 

materials with maximum high structural characteristics [3] handicap a wide practical application of 

strong alumina ceramics. As a rule, a relatively simple technique of uniaxial pressing followed by free 

sintering does not allow obtaining ceramics with a high level of mechanical properties [4]. Therefore, 

the problem of activating processes of alumina ceramic consolidation is of great practical importance. 

This work aims at investigating the activating methods of ceramic sintering based on Al2O3 through 

powder mechanical processing in a planetary mill adding nanopowders (NP) Al, Al2O3 and submicron 

powder TiO2 into a blend and applying the technology of spark plasma sintering (SPS). 

2. Experiment 

Manufactured oxide nanocrystalline powders (NP) Al2O3, Al2O3 - ZrO2 - Y2O3, obtained by plasma-

chemical synthesis were used. Besides plasma-chemical NP, coarse pure aluminum oxide powder, 

technical alumina powder and white electrocorundum were applied in the work. The electro-explosive 

NP Al was used as an activating additive.  

Particle size analysis of the coarse pure Al2O3 powder and technical alumina was conducted with 

the help of the analyzer А 20. Powder test portions with a weight of 50 gr were taken; vibration motor 

frequency was 70 Hz with sizing time 10 min. After sizing the fractions were weighed and the 

percentage of each fraction was calculated. Also bulk density, tapping density, flowability of all the 

powders under study were determined. 

Oxide powders were annealed in air in a high-temperature resistance furnace at 1450°С for an hour 

to transform γ-Al2O3 into α-Al2O3.  

To improve the processing characteristics and to increase activity, the annealed powders were 

processed in the high-energy planetary ball mill for 20 minutes at the rotation frequency of the 

grinding vessels 30 Hz. Zirconia balls were used as grinding bodies.  
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In order to determine the activating effect of machine processing on the consolidation process, 

white electrocorundum was machined at various modes (the rotation frequency was f – 20 and 30 Hz 

with processing time τ – 10, 20, 30 and 40 minutes at each frequency). 

On being treated, the powder blends were sieved through the sieve No. 0045 for 10 minutes on the 

vibration motor С.1 to obtain fractions < 45 µm and plasticized by carboxymethylcellulose (CMC) 

water solution in an amount of 5 wt. % CMC – 95 % of the powder.  

After granulation and drying, the plasticized powders were molded by uniaxial pressing method in 

a steel mold, extrusion pressure was 400 МPа. The obtained compacts had the form of cylinders with a 

diameter of 10±0.01 mm and a height of 5±0.01 mm.  

Compact sintering was carried out in a high-temperature resistance furnace according to the 

following mode: heating rate was 10 deg/min, isothermal holding temperature was 1600С with time 1 

h, cooled with the furnace. The processed unplasticized plasma-chemical NP Al2O3 was consolidated 

by means of SPS method in the unit SPS-515S (Sumitomo). 

The specimens sintered by SPS method had the form of cylinders with a diameter of 15,0±0,1 mm 

and a height of 2,0±0,2 mm.  

The density of the sintered specimens ρ was determined by hydrostatic weighing method in 96% 

ethanol (et=0,807 g/сm
3
 at 20С) with an accuracy of ±0,001 g. Also, the relative density of 

specimens  was calculated from: 

  
 

 
 

       , 

where t is the theoretical density of ceramics. 

The analysis of processing characteristics according to the abovementioned methods has shown 

that oxide nanopowders have a very low bulk density and flowability is substantially absent. The 

coarse powders Al2O3 possess a satisfactory level of processing characteristics. The data are presented 

in table 1. 

Table 1. Processing characteristics of initial powders. 

No. Powder composition 
Bulk density, 

(g/сm
3
) 

Tapping density, 

(g/сm
3
) 

Flowability, 

(g/s) 

1 NP Al2O3 0.07 0.06 - 

2 NP 80% Al2O3-19% ZrO2-1% Y2O3 0.14 0.14 - 

3 Coarse pure Al2O3 1.47 1.65 0.4 

4 Technical alumina 1.50 1.66 0.4 

The electro-explosive NP Al has bulk density equal to 0,2 g/сm
3
 and it does not possess 

flowability.  

Thus, the analysis of plasma-chemical NP Al2O3 properties allows making a conclusion that it is 

practically impossible to apply them in their initial condition as ready-to-use process feedstock.  

table 2 shows the results of particle-size analysis of the initial coarse oxide powders. It indicates that 

the powders have a similar fractional particles distribution. 

Table 2. Grain-size composition of coarse powders. 

Particles fraction 
Fraction composition Х, % 

Coarse pure Al2O3 Technical alumina 

+025 0 0 

-025+020 1.0 3.3 

-020+016 6.1 4.2 

-016+0125 9.6 10.1 

-0125+008 15.3 13.8 

-008+0063 24.0 23.8 

-0063+0045 23.9 24.6 

-0045 20.1 19.8 
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To improve the processing characteristics of plasma-chemical and coarse powders on the basis of 

Al2O3, they were processed in a planetary mill for 20 minutes at the grinding vessels rotation 

frequency of 30 Hz. Such a mode of oxide powder processing is optimal [5]. The data are presented in 

table 3. 

 

Table 3. Processing characteristics of machined powders. 

No. Powders composition 
Bulk density, 

(g/сm
3
) 

Tapping density, 

(g/сm
3
) 

Flowability, 

(g/s) 

1 NP Al2O3 0.82 1.23 0.2 

2 NP 80% Al2O3-19% ZrO2-1% Y2O3 0.95 1.26 0.2 

3 Coarse pure Al2O3 1.22 1.47 0.4 

4 Technical alumina 1.36 1.49 0.4 

 

During the processing, spherical particles of plasma-chemical powders were destroyed and grouped 

into hard agglomerates. The processing of coarse powder Al2O3 significantly increased the 

composition of fine fractions (-0063) up to 60%. 

It has been found that the most effective mode for processing white electrocorundum powder in the 

planetary ball mill is as follows: the rotation frequency of the grinding vessels should be f – 30 Hz 

with the processing time  – 40 min.  

When powders are processed according to this mode, coarse fractions substantially disappear 

(+010), the number of medium fractions reduces (-010+008) and fine fraction outcome significantly 

increases (-0063) to more than 75% (Table 4). The bulk density of processed white electrocorundum 

powder was found to be 1.23 g/сm
3
. 

 

Table 4. Grain-size composition of white electrocorundum powder 

(grinding vessels rotation frequency f was 30 Hz). 

Particles fraction 

Processing time, min 

10 20 30 40 

Fraction composition Х, % 

+020 0.5 0.1 0 0 

-020+014 4.4 2.5 2.1 0 

-014+010 2.2 2.1 2.0 1.4 

-010+008 18.5 14.4 9.7 10.1 

-008+0063 8.8 13.3 12.6 13.3 

-0063+0045 53.7 51.4 48.8 47.7 

-0045 11.8 16.2 24.8 27.5 

 

Figure 1 shows the diagrams of extruding powders without activating additives which were 

processed in a planetary mill and plasticized. These studies were conducted to determine the optimal 

extrusion pressure. It can be observed that when the pressure exceeds 400 МPа, the increase in pressed 

density is quite insignificant. Thus, the optimal extrusion pressures of the studied powders are within a 

range of 300 to 400 МPа. 

Coarse pure Al2O3 powder was excluded from further experiments since the properties of the 

alumina ceramics sintered from this powder was analyzed by the authors in the work [6]. 

The processed powder compositions 1,2 and 4 (Table 3) and white electrocorundum powder were 

sieved into franction–0063, mixed with activating additives in the planetary mill. The mixtures were 

plasticized in accordance to the above method. 

The compositions of the obtained powder mixtures are presented in table 5. 
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Figure 1. The diagrams of extruding the processed oxide powders (the 

grinding vessels rotation frequency is f – 30 Hz with the processing time  

– 40 min). 

 

Table 5. Powder mixture compositions. 

No. 

Composition, wt. %  

NP Al2O3 NP 80% Al2O3- 

19% ZrO2-1% Y2O3 

Technical  

alumina 

White 

electrocorundum 

NP 

Al 

TiO2 

1 100 0 0 0 0 0 

2 95 0 0 0 5 0 

3 98,5 0 0 0 0 1,5 

4 0 100 0 0 0 0 

5 0 95 0 0 5 0 

6 0 0 100 0 0 0 

7 5 0 95 0 0 0 

8 10 0 90 0 0 0 

9 20 0 80 0 0 0 

10 0 0 95 0 5 0 

11 0 0 98,5 0 0 1,5 

12 0 0 0 100 0 0 

13 10 0 0 90 0 0 

14 0 0 0 95 5 0 

15 0 0 0 98,5 0 1,5 

The prepared mixtures were used to obtain a compact sintered according to the above modes. 

Figure 2 shows the results of measuring the density ratio of the sintered alumina ceramics. Adding 

NP Al2O3 into technical alumina powder increased the density of sintered ceramics. This activating 

effect is due to the expanding area for particle contacts which results from adding NP Al2O3. The 

sintering activation mechanism is due to the increased structural and surface activity of NP Al2O3, 
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which is determined by the crystal structure faultiness, the size and shapes of particles. The most 

considerable growth in density was observed in the ceramics containing NP additive Al2O3 in an 

amount of 5 to 20 wt. %. 
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Figure 2. The dependence of ceramic density ratio on the additives 

amount and chemical composition: 1, 2, 3, 4 – ceramics sintered from 

NP Al2O3, NP 80% Al2O3-19% ZrO2-1% Y2O3, technical alumina and 

white electrocorundum powders respectively (the first and the third 

columns are equivalent for the composition 1; NP Al2O3 and the powder 

TiO2 were not added into the composition 2). 

 

Additional contribution to activating sintering of NP Al2O3 owing to adding NP Al is the subject of 

practical interest. The reduction in the density of sintered ceramics was observed when nanodispersed 

aluminum was added to NP Al2O3. This is due to the increase in the sintered ceramic porosity caused 

by the oxidation of additive NP Al up to α-Al2O3 within the sintering process. The oxidation was 

accompanied by a significant decrease in the specific volume of introduced additive caused by a 

significant difference in density of Al (2.7 g/сm
3
) and α-Al2O3 (3.96 g/сm

3
) which was observed in a 

number of experiments. Thereby, the main benifit of NP as a sintering activator – its ability to form a 

great number of particle contacts at its very small amount in the sintering compact – turned to be 

unimplemented. 

3. Summary 

Ceramic sintering on the basis of Al2O3 activated by nanopowder additives of Al2O3 and Al has been 

studied. It was shown that adding nanopowder Al2O3 up to 20 wt. % into the coarse powder -Al2O3 

activates alumina ceramics sintering process. Consequently, there is an increase in density and 

microhardness of the sintered alumina ceramics. The research has indicated a significant effect of 

alumina ceramic density growth resulted from introducing the submicron powder TiO2 in the amount 

of 1,5 wt. % into the initial blends composition. 
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