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Abstract. The algorithm for the definition of the interval settings of the linear regulator 

ensuring its robust stability and admissible oscillation was developed. The algorithm is based 

and constructed on the sufficient conditions binding the interval coefficient of the characteristic 

polynomial of the system and its regulator parameters.  The application of this algorithm for 

the definition of the interval coefficient of the transfer function was also considered in the 

given paper. Performance of the algorithm was tested by construction of localization regions of 

the roots of the interval polynomial upon the determined intervals of the controller parameters. 

1. Introduction 

One of the main objectives of the robust control theory is the analysis and synthesis of the linear 

control systems with unknown parameters which are located in certain ranges. The solution of the 

problem relating to the analysis of the stability of the specified system is possible on the basis of the 

necessary and sufficient criterion applying the Kharitonov theorem [1]. The overview of the methods 

concerning problem solution of control system synthesis with the interval - indefinite parameters is 

presented in papers [2-5].  Despite the available results, the investigation in the area of the synthesis of 

the robust control system with interval - indefinite parameters is still crucial. Thereby, the problem 

concerning the interval - parametric synthesis of the robust regulators where the location of the system 

poles is in the left semiplane at any variations of the coefficient of the characteristic polynomial of the 

system is of great importance.  

The aim of the given work is to develop the technology intended to determine the interval 

parameters of the robust regulator which ensure the robust stability of the system at any interval 

coefficients of the control object. 

2. Algebraic conditions for stability and oscillation of the interval polynomial  

Let us assume that the automatic control system contains an object  
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   , , / ,cW s k K s k s where k  is the vector of adjustable parameters.  Let us write down the 

characteristic polynomial of the control system  
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Let us introduce the coefficient parameters of stability λi [6] formed by the quadruples of the 

adjacent polynomial coefficients (1): 1 2
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Stability domains constructed upon these conditions will be located inside the exact stability region 

found by any necessary and sufficient condition. Restriction of this field is insignificant and occurs 

through discarding points, which refer to systems with a minor stability factor. 

The inclination of the system to the oscillations is characterized by the index of oscillation δz [6-7] 

inequalities for the determination of unknown parameters of the regulator. The oscillatory character 

[δz] for the interval system is determined on the basis of the coefficients of the interval characteristic 

polynomial [1] 
2

1 1

[
[ ] ,  1,  1

[  

( ) ]

( ) ([ ])]


 

  z

z

z z

k
z

k

p
n

pkp
. Sufficient condition for a given degree of 

oscillation is formulated on the basis of oscillation indexes δz [6-7]. To locate the roots of the interval 

characteristic polynomial (1) in a given angular sector ±, we must select controller settings, which 

would enable the following conditions 
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where d - is an admissible oscillation index. 

Robust stability and robust oscillation of the interval characteristic polynomial can be estimated 

upon the conditions (2) and (3). 

3. The algorithm of the definition of the regulator interval parameters 

Suppose that at least two leading coefficients of the characteristic polynomial (1) are known. Let us 

create the inequality systems to determine the unknown parameters of the regulator using the 

conditions (2), (3).  

*

2

1 1

1 2

1

*, 0
( ) ( )

 - 2, - 3,...1   
( ) ( )

(

,465;

,  1, 1.
)

- 2,...
( ) ( ) 

i i
i

i i

z

z d

z z

p k p k
i n n

p k p k

k

k

p
z n

p
n

p k

 

 





 












   



  

                             (4) 

We will obtain the equations for the limits of the regulator coefficients  k  on the basis of the 

system (4). 
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The algorithm intended to determine the limits of the regulator parameters of the control system is 

constructed on the basis of the equations (5) - (12). These limits ensure the robust stability of the 

system. The given algorithm includes the following stages: 

1. The specification of the coefficients of the control object and the admissible index of oscillation 

δd.  

2. The polynomial formation (1).  

3. The check of the fulfillment of the problem specification (2), (3) for the known coefficients of 

the polynomial (1). 

4. The calculation of the upper limits of the parameter km on the basis of equations (5), (6) and the 

selection of the maximum value. 

5. The calculations of the bottom limit of the parameter km on the basis of the equations (7), (8) 

and the selection of the maximum value. 

6. Similar calculation of the limits of other parameters on the basis of the equations (9) – (12). 

7. The check of the fulfillment of the problem specification (2)-(3) for the evaluated values of the 

limits of the regulator parameters. 

4. Application of the algorithm in the interval-parametric synthesis of the robust controller 
Let us consider the operability of the reduced algorithm by the example of interval-parametric 

synthesis of speed control system of a descent submersible (DS) vehicle. The description of the given 

system is presented in work [8]. The block diagram of the system constructed on the basis of 

mathematical description [8] is illustrated in Figure 1. 
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Figure 1. Structure diagram of the speed control system of a DS. 

 
The system has the following constant parameters [8]:  Кvss =0,2[Vs/m] – transfer constant of the 

vertical speed sensor of DS; Кm1=Кm2=0,3[Nm/A] – transfer constant of the engines; 

Кe1=Кe2=1[Vs/rad] – transfer constants of counter-emf of the engines of boat hoist (BH) and shock-

absorbing hoist SAH; J1=100 [kgm
2
], J2=0,5[kgm

2
] – are relatively the moments of inertia of BH and 

SAH; R1=0,2[m] and R2=0,1[m] – are relatively the drum radii of BH and SAH; Кfb=0,21[Vs/rad] – 

feedback coefficient on speed of BH. The length of the rope and the DS mass are considered as the 

interval parameters of the system. Speed loop of BH has a typical structure including speed feedback 

and proportional speed controller Kac=20000. The aim of this loop is to provide the required dynamic 

of BH in the descent and ascent mode of DS by means of the selection of the parameters settings Kac 

and Кfb (Figure 1). 

The length of the cable from the interval [2; 20] m changes with the change of the depth of the 

descent of submersible vehicle and hence its parameters are equal to æ= (6·104/l), C=(6·106/l). 

Weight mds of the descent submersible vehicle can also undergo some changes by the lifting of various 

objects from the bottom and is within the range [300; 350] kg.  

The specified factors lead to the variation of dynamic properties of speed control systems of the 

descent submersible vehicle that has negative impact on the damping of oscillation of the descent 

submersible vehicle and can cause the system performance loss. In connection with above mentioned 

factors it is necessary to impart robust properties to the system which ensure the permissible operation 

quality at any possible variations of unstable parameters.  

As a result of block diagram transformation shown in Figure 1 the transfer function of open-loop 

system is as follows:  
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where 

4[ ] [600000;875000]a  , 3[ ] [28921800; 35447625]a 
2[ ] [2394400080; 2738425575]a 
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1[ ] [25429505400; 29034005400.0000]a  ,
0 a 2160540000 ,

0 b 43210800 ,
1 b 4032108 ,

2 b 36000 . 

We need to determine the setting intervals of PI-controller: k1, k2 which provide that the automatic 

control system is robustly stable and conditions for oscillation at given δd =1,4. 
We write the interval characteristic polynomial of this system, as follows  
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To solve this task, we elaborate the system in the form (4):  
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Solving this system and using an algorithm to determine the unknown parameters of the regulator  
6 8

0 1.385 10 1.111[ ] 1[ ; ]0k   5 7

1 2.74 10 1.824[ ] 1[ ; ]0k    

This result is checked by constructing the localization regions of the roots the interval polynomial 

(13) (figure 2). 
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(b) 

Figure 2. (a) Regions of root localization; (b) regions of root localization on a larger scale. 

 

Thus, the system with the interval objects under consideration will be robust – stable at any 

parameters of PI-regulator from the computed and specified ranges. 

5. Conclusion 

The algorithm intended to determine the limit of parameters of the regulator ensuring the robust 

stability of the system with the interval control objects based on the robust modification of the 

coefficient method was developed in the given paper. The efficiency of this algorithm was checked on 

the interval-parametric synthesis of the robust PI- regulator and was confirmed by the graphs of the 

areas of the location of roots of the characteristic polynomial.   
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