СИНТЕЗ ПИ-РЕГУЛЯТОРА ЗАДАННОЙ СТЕПЕНИ АПЕРИОДИЧЕСКОЙ УСТОЙЧИВОСТИ ДЛЯ СИСТЕМ НИЗКОГО ПОРЯДКА

О.А. Ченкова, М.И. Пушкарев Томский Политехнический Университет

ox1992@bk.ru

Введение

В настоящее время существует множество методов синтеза систем автоматического управления (САУ). Известно, что при их проектировании инженерными методами стараются упростить их математические модели, пренебрегая малыми параметрами системы [1]. При этом основываются на том положении, что динамика любой САУ сколь угодно высокого порядка с допустимой степенью точности может быть описана динамикой системы второго-третьего порядка [2].

Существует большой класс САУ, в которых переходные процессы не допускают колебаний, т.е. должны быть апериодическими. Таким образом, тематикой данной статьи является разработка методики синтеза линейного регулятора для систем низкого порядка, обеспечивающего в системе гарантированную динамику.

Постановка задачи

Структурная схема САУ имеет вид $W_{p}(s) \qquad W_{Oy}(s)$

Рис. 1. Структурная схема САУ

где передаточная функция (ПФ) объекта управления $W_{\rm OY}(s) = \frac{k}{c_2 s^2 + c_1 s + c_0}$, а в качестве регулято-

ра используется ПИ-регулятор $W_{\mathrm{P}}(s) = \frac{k_{\mathrm{I}}s + k_{\mathrm{0}}}{s}$,

где k_0 и k_1 — настраиваемые параметры регулятора.

Условием апериодических переходных процессов является такое расположение полюсов, при котором ближайшим к мнимой оси является вещественный полюс, а область локализации свободных полюсов удалена на достаточное расстояние γ =[η , α], как показано на рис. 2.

Необходимо расположить вещественный полюс α замкнутой CAУ в заданной точке комплексной плоскости, а оставшиеся свободные полюса левее границы η .

Разделение характеристического полинома на доминирующий и свободный

На основании ПФ объекта управления и регулятора характеристический полином замкнутой САУ может быть представлен в виде:

$$A(s) = \sum_{i=0}^{n} a_i s^i = a_3 s^3 + a_2 s^2 + a_1 s + a_0, \ a_i > 0.$$
 (1)

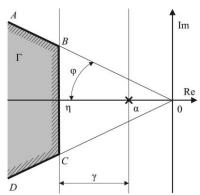


Рис. 2. Расположение доминирующего и свободных полюсов стационарной системы

Пусть минимальная степень устойчивости задается корнем $s=-\alpha$, который является решением полинома

$$Q(s) = s + \alpha . (2)$$

Полином Q(s) будем называть доминирующим полиномом.

Необходимо выделить полином Q(s) из полинома (1), путем деления полинома (1) на полином (4) столбиком. При этом получается свободный полином вида:

$$P(s) = \sum_{i=0}^{n-1} p_i s^i = p_2 s^2 + p_1 s + p_0, \, p_i > 0 \,, \quad (3)$$

корни которого будут являться свободными полюсами системы.

Также при делении столбиком получится остаток от деления

$$R = a_0 - \alpha p_0, \tag{4}$$

На основании приведенных выше выражений, характеристический полином САУ может быть представлен в виде A(s) = Q(s)P(s) + R.

Рассмотрим случай, когда характеристический полином замкнутой системы имеет порядок n=3, тогда свободный полином имеет второй порядок. На основании решения квадратного уравнения получены аналитические выражения для двух типов расположения свободных полюсов САУ:

-свободные полюса системы вещественные

$$\begin{cases} p_1^2 - 4p_0p_2 > 0; \\ p_0 \ge \eta p_1 - \eta^2 p_2, \end{cases}$$
 (5)

-свободные полюса системы комплексносопряженные

$$\begin{cases} p_1^2 - 4p_0p_2 < 0; \\ p_1 > 2\eta^2p_2. \end{cases}$$
 (6)

На основании полученных выражений были определены условия, связывающие параметры

ПИ-регулятора с параметрами объекта управления и параметром η (таблица 1).

Таблица 1. Условия расположения свободных полюсов

Вид	Условия для параметров регулятора
полюсов	
Веще- ствен- ные	$k_{1} < \frac{(c_{1} - \alpha c_{2})^{2} - 4c_{2}c_{0} + 4\alpha c_{2}(c_{1} - \alpha c_{2})}{4c_{2}}$ $k_{1} > \alpha(c_{1} - \alpha c_{2}) + \eta(c_{1} - \alpha c_{2}) - \eta c_{2} - c_{0}$ $k_{0}(k_{1}) = \alpha(k_{1} + c_{0} - \alpha(c_{1} - \alpha c_{2}))$
Ком- плекс- но- сопря- женные	$k_1 > \frac{(c_1 - \alpha c_2)^2 - 4c_2c_0 + 4\alpha c_2(c_1 - \alpha c_2)}{4c_2}$ $k_0(k_1) = \alpha(k_1 + c_0 - \alpha(c_1 - \alpha c_2))$

Пример

параметры ПИ-регулятора, обеспечивающие в системе доминирующий вещественный полюс $\alpha=1$ и расположение свободных полюсов левее $\eta=15$.

На основании условий из таблицы 1, а также ПФ объекта управления и значений α и η получим область допустимых значений параметра регулятора $k_1 \in [46,13;58,090)$ для случая, когда свободные полюса системы – вещественные:

- 1. при $k_1=46,13$ находим $k_0=43,2\,,$ $s_1=-1\,,$ $s_2=-15\,,$ $s_3=-41,143\,;$
- 2. при $k_1=58,08$ находим $k_0=55,15$, $s_1=-1$, $s_2=-27,687$, $s_3=-28,456$.

На рисунке 3 изображены переходные характеристики системы при различных значениях параметров регулятора. Так кривая 1 соответствует $k_0=43,2$, $k_1=46,13$, а кривая 2 $-k_0=55,15$, $k_1=55,15$. Кривая 1 определяет следующие прямые показатели качества системы $t_{\rm P}=1,31,c$, $\sigma=4,58\%$; кривая 2 соответствует $t_{\rm P}=1,05,c$, $\sigma=4\%$.

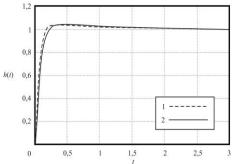


Рис. 3. Переходные характеристики системы (корни вещественные)

Заметим, что при выборе правой границы диапазона изменения параметра k_1 обеспечивается максимальная степень доминирования γ .

Теперь зададимся требованием, что корни свободного полинома должны быть комплексносопряженными. На основании условий из таблицы 1 получена область допустимых значений параметра регулятора $k_1 \in (58,090;\infty)$, причем

- 1. при $k_1=58,1$ определяем $k_0=55,17$, $s_1=-1$, $s_2=-28,071+0,371j$, $s_3=-28,071-0,371j$;
- 2. при $k_{\rm l}=100$ определяем $k_{\rm 0}=97,07$, $s_{\rm l}=-1$, $s_{\rm 2}=-28,071+24,469\,j$, $s_{\rm 3}=-28,071-24,469\,j$.

Видно, что при выборе значения параметра k_1 на левой границе его допустимого интервала выполняется условие комплексно-сопряженности свободных корней, а при увеличении k_1 степень доминирования γ остается прежней, но увеличивается степень колебательности системы.

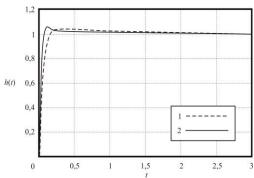


Рис. 4. Переходные характеристики системы (корни комплексно-сопряженные)

Прямые показатели качества: для случая $1-t_{\rm p}=1,05,c$, $\sigma=4\%$; для случая $2-t_{\rm p}=0,452,c$, $\sigma=5,57\%$.

Заключение

Значимость данной работы заключается в том, что её можно использовать в качестве примера к решению задач подобного типа, а полученные условия синтеза параметров ПИ-регулятора достаточно просты для создания на их основе программного обеспечения и применения в инженерной практике.

Литература

1. Абдуллин, А.А. Анализ робастности неадаптивной системы управления электропривода с вариациями структуры и параметров / А.А. Абдуллин, В.Н. Дроздов // Научно-технический вестник информационных технологий, механики и оптики. – $2012.- \mathbb{N} _{2}$ 6. – С. 40-44.

Райцын, Т.М. Синтез систем автоматического управления методом направленных графов. / Т.М. Райцын — Л.: Энергия, 1970. — 96 с