ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ТРАНСПОРТИРОВКИ НИЗКОЭНЕРГЕТИЧЕСКОГО ВЫСОКОТОЧНОГО ЭЛЕКТРОННОГО ПУЧКА В ТРУБЕ ДРЕЙФА ПРИ РАЗЛИЧНОЙ ПЛОТНОСТИ ПЛАЗМЫ И НАПРЯЖЕННОСТИ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ

Уникальные возможности сильноточных электронных пучков (СЭП) по транспортировке энергий высокой плотности на достаточно большие расстояния без существенных потерь вызывает повышенный интерес к их прикладному использованию в технологических процессах связанных с изменением состояния и свойств поверхности материалов.

Эффективная транспортировка пучков с высокими плотностями тока (десятки кА) и низкими энергиями (десятки кэВ) электронов возможна только при обеспечении практически полной зарядовой нейтрализации [1] и достаточно высокой токовой нейтрализации. Чтобы обеспечить указанные условия транспортировку низкоэнергетических СЭП осуществляют, инжектируя их в плазму или нейтральный газ низкого давления $(10^{-1}...10^{-2}\,\Pi a)$, кроме того для подавления эффекта самопинчевание пучка транспортировка происходит в присутствии внешнего продольного магнитного поля.

Таким образом, транспортировка низкоэнергетического СЭП без существенных потерь, представляет сложную задачу.

Математическая модель самосогласованной динамики пучка в поле пространственного заряда и магнитных полях при его транспортировке в пространстве дрейфа, заполненного плазмой с однородной плотностью n_0 , разработана на основе описания электронов пучка и плазмы макрочастицами [2]. Модель построена для области, совпадающей с областью цилиндрической камеры, и имеет размерность 2,5 (трехмерная по динамике, двумерная по полям) [3]. Примем L и R — длина и радиус трубы дрейфа; R_b — радиус пучка; J_z — плотности тока в пространстве дрейфа; B_z * — внешнее магнитное поле; V_z — скорость электронов пучка; r, z, θ — компоненты цилиндрической системы координат.

При построении модели предполагалась:

- аксиальная симметрия процессов $\frac{\partial}{\partial \theta} = 0$;
- неподвижность ионов (концентрация ионов плазмы считается однородной и постоянной $n_i = n_0$):

Динамика электронов пучка и плазмы описывается системой релятивистских уравнений в цилиндрической системе координат:

$$\begin{cases} \frac{d\left(\gamma_{\alpha}\dot{z}\right)}{dt} = -\frac{e}{m_{0}}\left(\dot{r}B_{\theta} + E_{z}\right) - \nu_{ef}\dot{z} \\ \frac{d\left(\gamma_{\alpha}\dot{r}\right)}{dt} = -\frac{e}{m_{0}}\left(r\dot{\theta}B_{z}^{*} - \dot{z}B_{\theta} + E_{r}\right) + \gamma_{\alpha}r\dot{\theta}^{2} - \nu_{ef}\dot{r} \\ \frac{1}{r}\frac{d\left(\gamma_{\alpha}r^{2}\dot{\theta}\right)}{dt} = \frac{e}{m_{0}}\left(\dot{r}B_{z}^{*}\right) - \nu_{ef}r\dot{\theta} \end{cases}$$

$$(1)$$

где m_0 — масса покоя электрона; e — элементарный заряд; E_z , E_r , B_θ — компоненты собственного электромагнитного поля пучка; B_z^* =const — компонента внешнего магнитного поля; γ_α — релятивистский фактор частиц α ; α — электроны пучка и плазмы; ν_{ef} — эффективная частота столкновений.

Собственное поле пучка описывается уравнениями Пуассона для скалярного потенциала Φ и продольной компоненты векторного потенциала A_{γ} .

Плотности заряда и тока пучка связаны уравнением непрерывности. Суммарная плотность заряда описывается соотношением:

$$\rho = \rho_b + (\rho_i + \rho_e), \tag{2}$$

где ρ_b , ρ_e — плотности заряда электронов пучка и плазмы. Плотность ионов плазмы с большой степенью точности можно считать постоянной. Это связано с тем, что ионизация газа электронами пучка может поддерживать плотность плазмы приблизительно на постоянном уровне, компенсируя рекомбинацию. Это возможно при достаточно высокой степени ионизации газа в области давлений $10^{-1} \dots 10^{-2}$ Па. Поэтому определим плотность заряда ионов плазмы как $\rho_i = n_0 e$.

Начальное условие для плотности заряда электронов пучка задано как $\rho_b \big|_{t=0} = 0$, что соответствует отсутствию пучка в трубе дрейфа.

Плотность тока J_z рассчитывается как сумма плотностей тока электронов пучка j_{bz} и плазмы j_{pz} , определяемые соотношениями:

$$J_{z} = j_{bz} + j_{pz}, (3)$$

$$j_{bz} = \rho_b v_z, \ j_{pz} = \rho_e v_{pz}, \ (4)$$

где v_z и v_{pz} - скорость электронов пучка и плазмы.

Граничные условия для потенциалов задаются исходя из условий идеальной проводимости поверхности стенок трубы (r=R) и условия непрерывности потенциалов на оси трубы (r=0) и на торцах трубы (z=0) и z=L.

Компоненты полей пучка вычисляются по формулам дифференцирования потенциалов.

При решении модельной задачи параметры пучка и плазмы выбирались подобными экспериментальным [3]. Инжектируемый ток пучка на фронте (τ_{Φ}) изменяется по линейному закону, за фронтом — задан в виде постоянного тока (I_{θ}).

В качестве исследуемых параметров от которых зависит эффективность транспортировки были выбраны плотность плазмы заполняющей трубу дрейфа, напряженности внешнего магнитного поля и время переднего фронта импульса тока пучка. Критерием эффективности транспортировки принималось отношение получаемого тока на выходе из трубы дрейфа к току импульса на входе.

Зависимость эффективности транспортировки от плотности плазмы, при фиксированных значениях внешнего магнитного поля ($B_z^*=1 \ \kappa \Gamma c$) и переднего фронта импульса представлена на рисунке 1. Анализ полученных результатов что высокая эффективность показывает, достигается транспортировки пучка при плотности плазмы равной или большей плотности пучка, оценённой по формуле:

$$n_{b0} = \frac{I_B}{I_A} \frac{1}{S_b r_e \beta_{z0}} \,, \tag{5}$$

где I_b — ток пучка, I_A — ток Альфена, S_b — площадь сечения пучка, r_e — классический радиус электрона, β_{z0} — скорость электронов пучка при начальной энергии электронов W_0 . Для приведенных параметров пучка, плотность составила $\sim 2 \ 10^{11} \ {\rm cm}^{-3}$.

Недостаточная эффективность транспортировки при меньшей плотности плазмы объясняется недостаточной зарядовой пучка, нейтрализации что приводит образованию виртуального катода на входе трубы Образование виртуального происходит в момент, когда ток импульса, соответствующий плотности пучка, превысит плотности плазмы в трубе дрейфа.

Рисунок отражает 2 зависимость эффективности транспортировки пучка величины напряжённости внешнего магнитного поля, при фиксированных значениях плотности плазмы (кривая 1 - n_0 =2.5 10^{11} см⁻³, кривая 2 $n_0 = 1.8 \ 10^{17}$ см⁻) и фронта импульса ($\tau_{\Phi} = 300$ нс). Достаточно высокая эффективность транспортировки достигается при значениях напряженности магнитного поля больших или равных напряженности собственного магнитного поля пучка, которую можно оценить формуле:

$$B_b = \frac{1}{4\pi} \frac{2I_b}{cr_b} \sqrt{\frac{\mu_0}{\varepsilon_0}} , \qquad (6)$$

где r_b - радиус пучка. Величина собственного магнитного поля для исходных параметров пучка составила 0.06 Тл. Меньшее значение

напряженности внешнего магнитном поле приводит к недостаточному ослаблению собственного магнитного поля и как следствие самопинчеванию пучка.

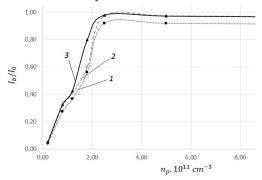


Рис. 1. Зависимость I_b/I_0 от плотности плазмы при I_0 =15 кA, τ_{ϕ} =300 нс, E_0 =20 кЭв, B_z = 1.0 кГс (1), 1.5 кГс (2), 3.0 кГс (3).

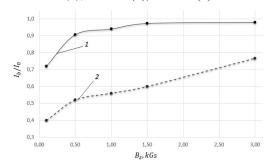


Рис. 2. Зависимость I_b/I_0 величины внешнего магнитного поля при I_0 =15 кA, τ_{Φ} =300 нс, E_0 =20 к Θ в, n_p = 2.5 10^{11} см $^{-3}$ (1), 1.8 10^{11} (2).

Выводы

Недостаточная величина магнитного поля ведет к некоторому сжатию пучка и увеличению плотности заряда. При этом в условиях недостаточно высокой плотности плазмы, это приводит к образованию виртуального катода и имеет место отражение части электронов, в первую очередь на оси пучка.

Литература

- 1. Григорьев В.П., Коваль Т.В., Кухта В.Р., Рахарджо П., Уемура К. Исследование транспортировки и фокусировки низкоэнергетического электронного пучка в ионизованном аргоне низкого давления Журнал технической физики, 2008, Т. 78, № 1, С. 104–108.
- 2. Григорьев В.П., Вагин Е.С., Офицеров В.В. Модель макрочастиц зарядовой нейтрализации электронного пучка при инжекции в плазму низкого давления Известия Томского политехнического университета, 2010, Т. 316, № 2, С. 85–89.
- 3. Назаров Д.С., Озур Г.Е, Проскуровский Д.И. Генерация низкоэнергетичных сильноточных электронных пучков в пушке с плазменным анодом Известия вузов. Физика, 1994, Т. 37, № 3, С. 100–114.