МОДЕЛИРОВАНИЕ МАГНИТНЫХ АНОМАЛИЙ В СРЕДЕ COMSOL

Д.Г. Солтанова, П.Ф. Баранов Томский политехнический университет dgs1@tpu.ru

Введение

В настоящее время экологическая обстановка в морях и океанах требует постоянного наблюдения и контроля. В связи с этим актуальной является проблема разработки точных методов и средств поиска, отслеживания и изучения подводных трубопроводов, кабелей и других объектов [1].

Тело, находящееся под водой, изменяет естественное магнитное поле Земли, создавая его аномалию. Эту информацию используют для обнаружения подводных объектов различные поисковые установки.

Различают активные и пассивные методы поиска. Активными методами являются индукционный (поиск объектов из металла) и радиолокационный (поиск как металлических, так и неметаллических объектов). К пассивным методам относят магнитометрический метод, предназначенный для поиска объектов из ферромагнетиков [2].

При отсутствии протекающего тока в ферромагнитных объектах определение объекта может быть осуществлено с помощью измерения магнитной индукции.

Для создания прецизионных средств поиска подводных объектов необходимо иметь представление о характере изменения магнитной индукции в зависимости от формы объекта и расстояния до него. Моделирование подобных условий возможно с помощью среды COMSOL Multiphysics.

В данной работе описана модель, позволяющая произвести оценку влияние ферромагнитного объекта на естественное магнитное поле Земли.

Моделирование

Трехмерная модель, созданная в программе COMSOL Multiphysics состоит из ферромагнитного объекта, помещенного в прямоугольный параллелепипед (водное пространство). Модель позволяет вычислить значение магнитной индукции в каждой точке пространства. Моделирование осуществляется следующим образом.

Ввод параметров

Размеры объекта и окружающей его области указаны в таблице 1.

Таблица 1. Параметры модели

Параметр	Значение
Общая длина	32 м
Радиус	2,5 м
Длина хвостовой части	7 м
Радиус хвостовой части	1 м
Высота башни	1.5 м

Продолжения таблицы	1. Параметры модели
Параметр	Значение

Большая полуось башни	2.5 м
Малая полуось башни	0.625 м
Ширина параллелепипеда	50 м
Длина параллелепипеда	100 м
Геомагнитное поле Земли	50 мкТ

Создание геометрии

Учитывая указанные в таблице 1 параметры, был создан эскиз профиля подводного объекта на первом рабочем плане и с помощью команды «Revolve» получена трехмерная фигура. Затем на втором рабочем плане был задан эллипс (основание башни), вытянутый на высоту 1,5 м с помощью команды «Extrude». После этого корпус и башня были объединены в один блок.

Водное пространство было создано в виде параллелепипеда согласно параметрам таблицы 1 таким образом, чтобы созданный объект оказался в центре пространства (Рис. 1).

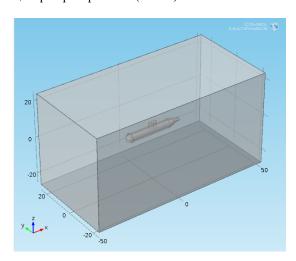


Рис. 1. Геометрия модели

Выбор материала

Для объекта выбран материал «Iron», для параллелепипеда – «Water».

Задание физики

Было задано фоновое магнитное поле, соответствующее магнитному полю Земли. Для этого выбрана категория магнитных полей без тока и в поле фонового магнитного поля задано значение вектора напряженности магнитного поля H_b в А/м по трем осям: для осей x и y — нулевые значения, для оси z — значение « $g_B/mu0_const$ », где gB — значение индукции геомагнитного поля Земли, $mu0_const$ — магнитная постоянная μ_0 .

Магнитная индукция задана через ввод значения относительной магнитной проницаемости μ_r .

Относительная магнитная проницаемость воды равна единице.

Построение сетки

Для построения сетки была выбрана обычная сетка с максимальным размером элемента 5 м и коэффициентом изгиба 0,4. После построения сетки программой производится вычисление магнитной индукции во всех точках модели.

Представление результатов

После завершения вычислений необходимо определить способ отображения результатов. Для трехмерного графика модуля магнитной индукции в плоскости под объектом выбран вид графика «Slice», вид плана «ху-plane» и координаты оси *z* «-15 m». Чтобы построить векторы тангенциальной магнитной индукции выбран вид графика «Arrow surface» и заданы выражения «Tangential magnetic flux density (mfnc.tBx,...,mfnc.tBz)», полученные графики представлены на рис. 2.

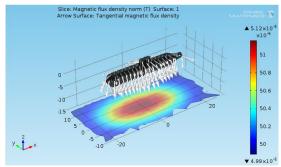


Рис. 2. График модуля магнитной индукции в слое -15 м и график тангенциального магнитного поля

Для оценки распределения магнитной индукции вдоль каждой из трех осей были построены графики зависимости магнитной индукции от расстояния. Для сечения по оси x была построена линия «Cut line 3D», с координатами начальной и конечной точек, и выбран тип графика «Line graph». Полученный график представлен на рис. 3.

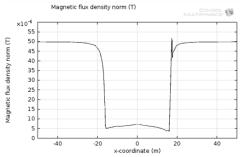


Рис. 3. Распределение магнитной индукции по оси x

Аналогично построенны графики по оси у и z, приведенные на рис. 4 и 5 соответственно.

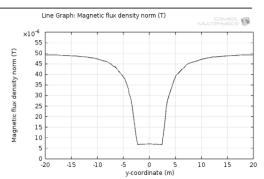


Рис. 4. Распределение магнитной индукции по оси у



Рис. 5. Распределение магнитной индукции по оси *z*

По графикам наблюдаем уменьшение магнитной индукции при приближении к объекту, начиная с расстояния 20 м.

Заключение

• Исходя из данных, полученных в результате расчета модели, можно сказать, что естественное магнитное поле Земли заметно изменяется вблизи металлического объекта. На расстоянии 20 м от объекта различие составляет примерно 1 мкТ. В зависимости от области применения поисковых приборов предъявляются разные требования к их точности. Таким образом, разрабатывая прибор, необходимо определить максимально допустимую дистанцию обнаружения объекта, приемлемый порог чувствительности и погрешность прибора.

Литература

- 1. Способ обнаружения и отслеживания электропроводного протяженного подводного объекта с борта подводной поисковой установки [Текст]: пат. 2136020 РФ. G01V3/00 / Агеев М.Д.; заяв-ль и пат-ль Инс-т проблем морских техн-й Дальневост. Отдел-я РАН. заявл 03.07.1998; опубл. 27.08.1999.
- 2. Щербаков Г.Н., Анцелевич М.А. Выбор электромагнитного метода зондирования для поиска объектов в толще укрывающих средах // Специальная техника. 2005. URL: http://www.ess.ru